--- language: - he license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: he results: [] --- # he This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7915 - Wer: 208.7179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3845 | 0.05 | 1 | 2.3331 | 122.4359 | | 2.3669 | 0.09 | 2 | 2.3331 | 122.4359 | | 2.327 | 0.14 | 3 | 2.3331 | 122.4359 | | 2.3936 | 0.18 | 4 | 2.0481 | 115.1282 | | 2.0786 | 0.23 | 5 | 1.8996 | 229.3590 | | 1.9254 | 0.27 | 6 | 1.7915 | 208.7179 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1