--- library_name: transformers language: - he license: apache-2.0 base_model: openai/whisper-tiny tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: he-cantillation results: [] --- # he-cantillation This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9273 - Wer: 71.8937 - Avg Precision Exact: 0.1966 - Avg Recall Exact: 0.2113 - Avg F1 Exact: 0.2010 - Avg Precision Letter Shift: 0.2269 - Avg Recall Letter Shift: 0.2498 - Avg F1 Letter Shift: 0.2336 - Avg Precision Word Level: 0.2459 - Avg Recall Word Level: 0.2741 - Avg F1 Word Level: 0.2538 - Avg Precision Word Shift: 0.4328 - Avg Recall Word Shift: 0.5013 - Avg F1 Word Shift: 0.4529 - Precision Median Exact: 0.0638 - Recall Median Exact: 0.0870 - F1 Median Exact: 0.0723 - Precision Max Exact: 1.0 - Recall Max Exact: 1.0 - F1 Max Exact: 1.0 - Precision Min Exact: 0.0 - Recall Min Exact: 0.0 - F1 Min Exact: 0.0 - Precision Min Letter Shift: 0.0 - Recall Min Letter Shift: 0.0 - F1 Min Letter Shift: 0.0 - Precision Min Word Level: 0.0 - Recall Min Word Level: 0.0 - F1 Min Word Level: 0.0 - Precision Min Word Shift: 0.0 - Recall Min Word Shift: 0.0 - F1 Min Word Shift: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift | |:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:| | 0.0506 | 3.5549 | 30000 | 0.7696 | 74.5620 | 0.1888 | 0.1999 | 0.1925 | 0.2219 | 0.2382 | 0.2266 | 0.2426 | 0.2636 | 0.2485 | 0.4348 | 0.4847 | 0.4502 | 0.0714 | 0.0854 | 0.0755 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0214 | 7.1098 | 60000 | 0.8339 | 70.3940 | 0.2052 | 0.2197 | 0.2098 | 0.2364 | 0.2572 | 0.2429 | 0.2575 | 0.2825 | 0.2647 | 0.4499 | 0.5098 | 0.4678 | 0.0741 | 0.0930 | 0.08 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0062 | 10.6648 | 90000 | 0.9273 | 71.8937 | 0.1966 | 0.2113 | 0.2010 | 0.2269 | 0.2498 | 0.2336 | 0.2459 | 0.2741 | 0.2538 | 0.4328 | 0.5013 | 0.4529 | 0.0638 | 0.0870 | 0.0723 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu126 - Datasets 2.12.0 - Tokenizers 0.20.1