File size: 11,682 Bytes
b3edcb1
d5be31e
 
b3edcb1
 
d5be31e
b3edcb1
 
 
 
d5be31e
b3edcb1
 
 
 
 
 
d5be31e
b3edcb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
language:
- he
base_model: ivrit-ai/whisper-v2-pd1-e1
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: he-cantillation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# he-cantillation

This model is a fine-tuned version of [ivrit-ai/whisper-v2-pd1-e1](https://huggingface.co/ivrit-ai/whisper-v2-pd1-e1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1065
- Wer: 11.5595
- Avg Precision Exact: 0.9158
- Avg Recall Exact: 0.9153
- Avg F1 Exact: 0.9152
- Avg Precision Letter Shift: 0.9349
- Avg Recall Letter Shift: 0.9345
- Avg F1 Letter Shift: 0.9344
- Avg Precision Word Level: 0.9374
- Avg Recall Word Level: 0.9371
- Avg F1 Word Level: 0.9369
- Avg Precision Word Shift: 0.9744
- Avg Recall Word Shift: 0.9751
- Avg F1 Word Shift: 0.9743
- Precision Median Exact: 1.0
- Recall Median Exact: 1.0
- F1 Median Exact: 1.0
- Precision Max Exact: 1.0
- Recall Max Exact: 1.0
- F1 Max Exact: 1.0
- Precision Min Exact: 0.0
- Recall Min Exact: 0.0
- F1 Min Exact: 0.0
- Precision Min Letter Shift: 0.0
- Recall Min Letter Shift: 0.0
- F1 Min Letter Shift: 0.0
- Precision Min Word Level: 0.0
- Recall Min Word Level: 0.0
- F1 Min Word Level: 0.0
- Precision Min Word Shift: 0.2222
- Recall Min Word Shift: 0.1667
- F1 Min Word Shift: 0.1905

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer      | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|
| No log        | 8e-05 | 1     | 4.8435          | 119.6859 | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0                      | 0.0                   | 0.0               | 0.0                    | 0.0                 | 0.0             | 0                   | 0                | 0            | 0                   | 0                | 0            | 0                          | 0                       | 0                   | 0                        | 0                     | 0                 | 0                        | 0                     | 0                 |
| 0.1248        | 0.08  | 1000  | 0.1621          | 23.2816  | 0.8165              | 0.8201           | 0.8175       | 0.8444                     | 0.8482                  | 0.8454              | 0.8487                   | 0.8532                | 0.8501            | 0.9200                   | 0.9275                | 0.9227            | 0.9                    | 0.9                 | 0.8966          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.1111                   | 0.0909                | 0.1111            |
| 0.0907        | 0.16  | 2000  | 0.1268          | 18.2188  | 0.8624              | 0.8589           | 0.8600       | 0.8863                     | 0.8828                  | 0.8839              | 0.8905                   | 0.8869                | 0.8880            | 0.9507                   | 0.9495                | 0.9494            | 0.9231                 | 0.9167              | 0.9231          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.1429                   | 0.125                 | 0.1333            |
| 0.04          | 0.24  | 3000  | 0.1182          | 14.9446  | 0.8826              | 0.8813           | 0.8815       | 0.9046                     | 0.9035                  | 0.9035              | 0.9079                   | 0.9067                | 0.9068            | 0.9633                   | 0.9635                | 0.9628            | 0.9375                 | 0.9375              | 0.9524          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.125                    | 0.1                   | 0.1176            |
| 0.0379        | 0.32  | 4000  | 0.1123          | 15.0111  | 0.8839              | 0.8853           | 0.8839       | 0.9081                     | 0.9096                  | 0.9082              | 0.9110                   | 0.9134                | 0.9115            | 0.9615                   | 0.9658                | 0.9629            | 0.9333                 | 0.9333              | 0.9474          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.1                      | 0.1                   | 0.1176            |
| 0.0274        | 0.4   | 5000  | 0.1092          | 13.3481  | 0.9011              | 0.8989           | 0.8996       | 0.9215                     | 0.9194                  | 0.9200              | 0.9240                   | 0.9225                | 0.9228            | 0.9684                   | 0.9685                | 0.9679            | 1.0                    | 1.0                 | 0.9630          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.1429                   | 0.1                   | 0.1176            |
| 0.0242        | 0.48  | 6000  | 0.1078          | 13.0044  | 0.9003              | 0.8977           | 0.8985       | 0.9211                     | 0.9187                  | 0.9194              | 0.9237                   | 0.9216                | 0.9221            | 0.9686                   | 0.9681                | 0.9678            | 1.0                    | 1.0                 | 0.9630          | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.1429                   | 0.1                   | 0.1176            |
| 0.0134        | 0.56  | 7000  | 0.1039          | 12.0547  | 0.9086              | 0.9072           | 0.9075       | 0.9270                     | 0.9257                  | 0.9259              | 0.9299                   | 0.9288                | 0.9290            | 0.9699                   | 0.9701                | 0.9696            | 1.0                    | 1.0                 | 1.0             | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.1538                   | 0.1429                | 0.1538            |
| 0.0118        | 0.64  | 8000  | 0.1077          | 11.8847  | 0.9104              | 0.9110           | 0.9103       | 0.9306                     | 0.9313                  | 0.9306              | 0.9331                   | 0.9339                | 0.9331            | 0.9726                   | 0.9748                | 0.9733            | 1.0                    | 1.0                 | 1.0             | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.0769                   | 0.0909                | 0.0833            |
| 0.0084        | 0.72  | 9000  | 0.1071          | 11.6223  | 0.9145              | 0.9141           | 0.9140       | 0.9336                     | 0.9332                  | 0.9330              | 0.9358                   | 0.9355                | 0.9353            | 0.9742                   | 0.9751                | 0.9742            | 1.0                    | 1.0                 | 1.0             | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.1429                   | 0.1                   | 0.1176            |
| 0.0065        | 0.8   | 10000 | 0.1065          | 11.5595  | 0.9158              | 0.9153           | 0.9152       | 0.9349                     | 0.9345                  | 0.9344              | 0.9374                   | 0.9371                | 0.9369            | 0.9744                   | 0.9751                | 0.9743            | 1.0                    | 1.0                 | 1.0             | 1.0                 | 1.0              | 1.0          | 0.0                 | 0.0              | 0.0          | 0.0                        | 0.0                     | 0.0                 | 0.0                      | 0.0                   | 0.0               | 0.2222                   | 0.1667                | 0.1905            |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1