--- library_name: transformers language: - he license: mit base_model: distil-whisper/distil-large-v3.5 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: he-cantillation results: [] --- # he-cantillation This model is a fine-tuned version of [distil-whisper/distil-large-v3.5](https://huggingface.co/distil-whisper/distil-large-v3.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7945 - Wer: 68.9512 - Avg Precision Exact: 0.2622 - Avg Recall Exact: 0.2502 - Avg F1 Exact: 0.2513 - Avg Precision Letter Shift: 0.2922 - Avg Recall Letter Shift: 0.2803 - Avg F1 Letter Shift: 0.2796 - Avg Precision Word Level: 0.3129 - Avg Recall Word Level: 0.3458 - Avg F1 Word Level: 0.3227 - Avg Precision Word Shift: 0.5277 - Avg Recall Word Shift: 0.5512 - Avg F1 Word Shift: 0.5260 - Precision Median Exact: 0.1429 - Recall Median Exact: 0.1379 - F1 Median Exact: 0.1333 - Precision Max Exact: 1.0 - Recall Max Exact: 1.0 - F1 Max Exact: 1.0 - Precision Min Exact: 0.0 - Recall Min Exact: 0.0 - F1 Min Exact: 0.0 - Precision Min Letter Shift: 0.0 - Recall Min Letter Shift: 0.0 - F1 Min Letter Shift: 0.0 - Precision Min Word Level: 0.0 - Recall Min Word Level: 0.0 - F1 Min Word Level: 0.0 - Precision Min Word Shift: 0.0 - Recall Min Word Shift: 0.0 - F1 Min Word Shift: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift | |:-------------:|:------:|:-----:|:---------------:|:--------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:| | No log | 0.0001 | 1 | 12.1921 | 169.3043 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0.096 | 0.5925 | 5000 | 0.9503 | 76.8918 | 0.1974 | 0.2042 | 0.1981 | 0.2302 | 0.2405 | 0.2312 | 0.2519 | 0.2806 | 0.2607 | 0.4684 | 0.5193 | 0.4828 | 0.1071 | 0.1111 | 0.1053 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0614 | 1.1850 | 10000 | 0.7945 | 68.9512 | 0.2622 | 0.2502 | 0.2513 | 0.2922 | 0.2803 | 0.2796 | 0.3129 | 0.3458 | 0.3227 | 0.5277 | 0.5512 | 0.5260 | 0.1429 | 0.1379 | 0.1333 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.7.0+cu126 - Datasets 2.12.0 - Tokenizers 0.20.1