VoxelPathFinder / app.py
c1tr0n75's picture
Create app.py
7f40cc7 verified
raw
history blame
3.61 kB
import os
from pathlib import Path
import numpy as np
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from pathfinding_nn import PathfindingNetwork, create_voxel_input
ACTION_NAMES = ['FORWARD','BACK','LEFT','RIGHT','UP','DOWN']
def load_model():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = PathfindingNetwork().to(device).eval()
# Prefer local checkpoint
local_ckpt = Path('training_outputs/final_model.pth')
ckpt_path = None
if local_ckpt.exists():
ckpt_path = str(local_ckpt)
else:
# Fallback to Hub (configure your repo and filename)
repo_id = os.getenv('MODEL_REPO_ID', '') # e.g. "your-username/voxel-pathfinder"
filename = os.getenv('MODEL_FILENAME', 'final_model.pth')
if repo_id:
ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename)
if ckpt_path is None:
raise FileNotFoundError("Model checkpoint not found. Upload to training_outputs/final_model.pth or set MODEL_REPO_ID+MODEL_FILENAME env vars.")
ckpt = torch.load(ckpt_path, map_location=device)
state = ckpt['model_state_dict'] if 'model_state_dict' in ckpt else ckpt
model.load_state_dict(state)
return model, device
MODEL, DEVICE = load_model()
def decode(actions):
return [ACTION_NAMES[a] for a in actions if 0 <= a < 6]
def infer_random(obstacle_prob=0.2, seed=None):
if seed is not None:
np.random.seed(int(seed))
voxel_dim = MODEL.voxel_dim # (32,32,32)
D,H,W = voxel_dim
obstacles = (np.random.rand(D,H,W) < float(obstacle_prob)).astype(np.float32)
free = np.argwhere(obstacles == 0)
if len(free) < 2:
return {"error": "Not enough free cells; lower obstacle_prob."}
s_idx, g_idx = np.random.choice(len(free), size=2, replace=False)
start = tuple(free[s_idx])
goal = tuple(free[g_idx])
voxel_np = create_voxel_input(obstacles, start, goal, voxel_dim=voxel_dim)
voxel = torch.from_numpy(voxel_np).float().unsqueeze(0).to(DEVICE) # (1,3,32,32,32)
pos = torch.tensor([[start, goal]], dtype=torch.long, device=DEVICE) # (1,2,3)
with torch.no_grad():
actions = MODEL(voxel, pos)[0].tolist()
return {
"start": start,
"goal": goal,
"num_actions": len([a for a in actions if 0 <= a < 6]),
"actions_ids": actions,
"actions_decoded": decode(actions)[:50]
}
def infer_npz(npz_file):
if npz_file is None:
return {"error": "Please upload a .npz with keys 'voxel_data' and 'positions'."}
data = np.load(npz_file.name)
voxel = torch.from_numpy(data['voxel_data']).float().unsqueeze(0).to(DEVICE) # (1,3,32,32,32)
pos = torch.from_numpy(data['positions']).long().unsqueeze(0).to(DEVICE) # (1,2,3)
with torch.no_grad():
actions = MODEL(voxel, pos)[0].tolist()
return {
"num_actions": len([a for a in actions if 0 <= a < 6]),
"actions_ids": actions,
"actions_decoded": decode(actions)[:50]
}
with gr.Blocks(title="Voxel Path Finder") as demo:
gr.Markdown("## 3D Voxel Path Finder — Inference")
with gr.Tab("Random environment"):
obstacle = gr.Slider(0.0, 0.9, value=0.2, step=0.05, label="Obstacle probability")
seed = gr.Number(value=None, label="Seed (optional)")
btn = gr.Button("Run inference")
out = gr.JSON(label="Result")
btn.click(infer_random, inputs=[obstacle, seed], outputs=out)
with gr.Tab("Upload .npz sample"):
file = gr.File(file_types=[".npz"], label="Upload sample (voxel_data, positions)")
btn2 = gr.Button("Run inference")
out2 = gr.JSON(label="Result")
btn2.click(infer_npz, inputs=file, outputs=out2)
if __name__ == "__main__":
demo.launch()