File size: 30,471 Bytes
ee6cc2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import Tuple, List, Optional
class VoxelCNNEncoder(nn.Module):
"""
Enhanced 3D CNN encoder for voxelized obstruction data with multi-channel support.
Processes environment obstacles, start position, and goal position.
"""
def __init__(self,
input_channels=3, # obstacles + start + goal
filters_1=32,
kernel_size_1=(3, 3, 3),
pool_size_1=(2, 2, 2),
filters_2=64,
kernel_size_2=(3, 3, 3),
pool_size_2=(2, 2, 2),
filters_3=128,
kernel_size_3=(3, 3, 3),
pool_size_3=(2, 2, 2),
dense_units=512,
input_voxel_dim=(32, 32, 32),
dropout_rate=0.2
):
super(VoxelCNNEncoder, self).__init__()
self.input_voxel_dim = input_voxel_dim
self.input_channels = input_channels
# First 3D Convolutional Block (Conv-BN-ReLU)
padding_1 = tuple([(k - 1) // 2 for k in kernel_size_1])
self.conv1 = nn.Conv3d(input_channels, filters_1, kernel_size_1, padding=padding_1)
self.bn1 = nn.BatchNorm3d(filters_1)
self.pool1 = nn.MaxPool3d(pool_size_1)
self.dropout1 = nn.Dropout3d(dropout_rate)
# Second 3D Convolutional Block (Conv-BN-ReLU)
padding_2 = tuple([(k - 1) // 2 for k in kernel_size_2])
self.conv2 = nn.Conv3d(filters_1, filters_2, kernel_size_2, padding=padding_2)
self.bn2 = nn.BatchNorm3d(filters_2)
self.pool2 = nn.MaxPool3d(pool_size_2)
self.dropout2 = nn.Dropout3d(dropout_rate)
# Third 3D Convolutional Block (Conv-BN-ReLU)
padding_3 = tuple([(k - 1) // 2 for k in kernel_size_3])
self.conv3 = nn.Conv3d(filters_2, filters_3, kernel_size_3, padding=padding_3)
self.bn3 = nn.BatchNorm3d(filters_3)
self.pool3 = nn.MaxPool3d(pool_size_3)
self.dropout3 = nn.Dropout3d(dropout_rate)
# Calculate flattened size
self._to_linear_input_size = self._get_conv_output_size()
# Dense layers with residual connection
self.fc1 = nn.Linear(self._to_linear_input_size, dense_units)
self.fc2 = nn.Linear(dense_units, dense_units)
self.dropout_fc = nn.Dropout(dropout_rate)
def _get_conv_output_size(self):
with torch.no_grad():
dummy_input = torch.zeros(1, self.input_channels, *self.input_voxel_dim)
# Standardized Conv-BN-ReLU order
x = self.conv1(dummy_input)
x = self.bn1(x)
x = F.relu(x)
x = self.pool1(x)
x = self.dropout1(x)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x)
x = self.pool2(x)
x = self.dropout2(x)
x = self.conv3(x)
x = self.bn3(x)
x = F.relu(x)
x = self.pool3(x)
x = self.dropout3(x)
return x.numel()
def forward(self, x):
# First conv block (Conv-BN-ReLU)
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.pool1(x)
x = self.dropout1(x)
# Second conv block (Conv-BN-ReLU)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x)
x = self.pool2(x)
x = self.dropout2(x)
# Third conv block (Conv-BN-ReLU)
x = self.conv3(x)
x = self.bn3(x)
x = F.relu(x)
x = self.pool3(x)
x = self.dropout3(x)
# Flatten and dense layers
x = x.view(x.size(0), -1)
x1 = F.relu(self.fc1(x))
x1 = self.dropout_fc(x1)
x2 = F.relu(self.fc2(x1))
# Residual connection
return x1 + x2
class PositionEncoder(nn.Module):
"""
Encodes start and goal positions with learned embeddings.
"""
def __init__(self, voxel_dim=(32, 32, 32), position_embed_dim=64):
super(PositionEncoder, self).__init__()
self.voxel_dim = voxel_dim
self.position_embed_dim = position_embed_dim
# Calculate dimensions for each axis to sum to position_embed_dim
dim_per_axis = position_embed_dim // 3
remainder = position_embed_dim % 3
x_dim = dim_per_axis + (1 if remainder > 0 else 0)
y_dim = dim_per_axis + (1 if remainder > 1 else 0)
z_dim = dim_per_axis
# Learned position embeddings for each dimension
self.x_embed = nn.Embedding(voxel_dim[0], x_dim)
self.y_embed = nn.Embedding(voxel_dim[1], y_dim)
self.z_embed = nn.Embedding(voxel_dim[2], z_dim)
# Additional processing - fixed input dimension
self.fc = nn.Linear(2 * position_embed_dim, position_embed_dim)
def forward(self, positions):
"""
positions: (batch_size, 2, 3) - [start_pos, goal_pos] with (x, y, z)
"""
batch_size = positions.size(0)
# Extract coordinates
# Clamp coordinates defensively to valid index ranges to avoid embedding OOB
x_coords = positions[:, :, 0].long().clamp_(0, self.voxel_dim[0] - 1) # (batch_size, 2)
y_coords = positions[:, :, 1].long().clamp_(0, self.voxel_dim[1] - 1) # (batch_size, 2)
z_coords = positions[:, :, 2].long().clamp_(0, self.voxel_dim[2] - 1) # (batch_size, 2)
# Get embeddings
x_emb = self.x_embed(x_coords) # (batch_size, 2, x_dim)
y_emb = self.y_embed(y_coords) # (batch_size, 2, y_dim)
z_emb = self.z_embed(z_coords) # (batch_size, 2, z_dim)
# Concatenate embeddings
pos_emb = torch.cat([x_emb, y_emb, z_emb], dim=-1) # (batch_size, 2, position_embed_dim)
# Flatten start and goal embeddings
pos_emb = pos_emb.view(batch_size, -1) # (batch_size, 2 * position_embed_dim)
return F.relu(self.fc(pos_emb))
class PathPlannerTransformer(nn.Module):
"""
Transformer-based path planner that generates action sequences.
Fixed token IDs to avoid collision:
- Actions: 0-5 (Forward, Back, Left, Right, Up, Down)
- START: 6
- END: 7
- PAD: 8 (used only for teacher forcing inputs; targets still use -1 for ignore)
"""
def __init__(self,
env_feature_dim=512,
pos_feature_dim=64,
hidden_dim=256,
num_heads=8,
num_layers=4,
max_sequence_length=100,
num_actions=6, # Forward, Back, Left, Right, Up, Down
use_end_token=True):
super(PathPlannerTransformer, self).__init__()
self.hidden_dim = hidden_dim
self.max_sequence_length = max_sequence_length
self.num_actions = num_actions
self.use_end_token = use_end_token
# Fixed token IDs to avoid collision
self.start_token_id = num_actions # 6
self.end_token_id = num_actions + 1 if use_end_token else None # 7
# Reserve a PAD token for embedding inputs during teacher forcing
self.pad_token_id = (num_actions + 2) if use_end_token else (num_actions + 1)
# Total tokens include PAD
self.total_tokens = (num_actions + 3) if use_end_token else (num_actions + 2)
# Feature fusion
self.feature_fusion = nn.Linear(env_feature_dim + pos_feature_dim, hidden_dim)
# Action embeddings
self.action_embed = nn.Embedding(self.total_tokens, hidden_dim)
# Positional encoding - register as buffer for proper device handling
self.register_buffer('pos_encoding', self._create_positional_encoding(max_sequence_length, hidden_dim))
# Transformer decoder
decoder_layer = nn.TransformerDecoderLayer(
d_model=hidden_dim,
nhead=num_heads,
dim_feedforward=hidden_dim * 4,
dropout=0.1,
batch_first=True
)
self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
# Output projection
self.output_proj = nn.Linear(hidden_dim, self.total_tokens)
# Turn head (now supervised via BCE-with-logits against turn labels)
self.turn_penalty_head = nn.Linear(hidden_dim, 1)
def _create_positional_encoding(self, max_len, d_model):
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
return pe.unsqueeze(0)
def forward(self, env_features, pos_features, target_actions=None):
"""
env_features: (batch_size, env_feature_dim)
pos_features: (batch_size, pos_feature_dim)
target_actions: (batch_size, seq_len) - for training (contains action IDs 0-5 and END token 7)
"""
batch_size = env_features.size(0)
# Fuse environment and position features
fused_features = self.feature_fusion(torch.cat([env_features, pos_features], dim=1))
# Create memory (encoder output) by repeating fused features
memory = fused_features.unsqueeze(1).repeat(1, self.max_sequence_length, 1)
if target_actions is not None:
# Training mode: use teacher forcing
seq_len = target_actions.size(1)
# Create input sequence (START token + target_actions[:-1])
start_tokens = torch.full((batch_size, 1), self.start_token_id,
dtype=torch.long, device=target_actions.device)
input_seq = torch.cat([start_tokens, target_actions[:, :-1]], dim=1)
# Replace padding (-1) in teacher-forced inputs with PAD token id to avoid OOB in embedding
input_seq = torch.where(input_seq < 0, torch.full_like(input_seq, self.pad_token_id), input_seq)
# Embed actions and add positional encoding
embedded = self.action_embed(input_seq)
embedded = embedded + self.pos_encoding[:, :seq_len, :]
# Generate attention mask (causal mask)
tgt_mask = self._generate_square_subsequent_mask(seq_len).to(embedded.device)
# Transformer decoder forward pass
output = self.transformer_decoder(
tgt=embedded,
memory=memory[:, :seq_len, :],
tgt_mask=tgt_mask
)
# Output projections
action_logits = self.output_proj(output)
# Turn logits for supervised turn classification
turn_logits = self.turn_penalty_head(output)
return action_logits, turn_logits
else:
# Inference mode: generate sequence autoregressively
return self._generate_path(memory, batch_size)
def _generate_square_subsequent_mask(self, sz):
mask = torch.triu(torch.ones(sz, sz), diagonal=1)
mask = mask.masked_fill(mask == 1, float('-inf'))
return mask
def _generate_path(self, memory, batch_size):
"""
Generate path sequence autoregressively, handling batches correctly.
Fixes bugs related to premature stopping and inclusion of special tokens.
"""
device = memory.device
# Start with START token
input_seq = torch.full((batch_size, 1), self.start_token_id, dtype=torch.long, device=device)
# Keep track of sequences that have generated an END token
is_finished = torch.zeros(batch_size, dtype=torch.bool, device=device)
for step in range(self.max_sequence_length):
# Embed current sequence
embedded = self.action_embed(input_seq)
seq_len = embedded.size(1)
embedded = embedded + self.pos_encoding[:, :seq_len, :]
# Generate causal mask
tgt_mask = self._generate_square_subsequent_mask(seq_len).to(device)
# Forward pass
output = self.transformer_decoder(
tgt=embedded,
memory=memory[:, :seq_len, :],
tgt_mask=tgt_mask
)
# Get next action probabilities from the last token in the sequence
next_action_logits = self.output_proj(output[:, -1, :])
next_actions = torch.argmax(next_action_logits, dim=-1, keepdim=True)
# Append the predicted actions to the sequence
input_seq = torch.cat([input_seq, next_actions], dim=1)
# Update the finished mask for any sequence that just produced an END token
if self.use_end_token:
is_finished |= (next_actions.squeeze(-1) == self.end_token_id)
# If all sequences in the batch are finished, we can stop early
if is_finished.all():
break
# Post-processing to create a clean, dense tensor of valid actions
# Remove the initial START token from all sequences
raw_paths = input_seq[:, 1:]
clean_paths_list = []
max_len = 0
for i in range(batch_size):
path = []
for token_id in raw_paths[i]:
# Stop decoding for this path if an END token is found
if self.use_end_token and token_id.item() == self.end_token_id:
break
# Only include valid movement actions in the final path
if token_id.item() < self.num_actions:
path.append(token_id.item())
clean_paths_list.append(path)
if len(path) > max_len:
max_len = len(path)
# Return an empty tensor if no valid actions were generated
if max_len == 0:
return torch.zeros(batch_size, 0, dtype=torch.long, device=device)
# Pad all paths to the length of the longest path in the batch
# We use the END token ID for padding, as downstream functions like
# check_collisions are designed to ignore non-action tokens.
pad_value = self.end_token_id if self.use_end_token else self.num_actions
padded_paths = torch.full((batch_size, max_len), pad_value, dtype=torch.long, device=device)
for i, path in enumerate(clean_paths_list):
if len(path) > 0:
padded_paths[i, :len(path)] = torch.tensor(path, dtype=torch.long, device=device)
return padded_paths
class PathfindingNetwork(nn.Module):
"""
Complete pathfinding network combining CNN encoder, position encoder, and transformer planner.
"""
def __init__(self,
voxel_dim=(32, 32, 32),
input_channels=3,
env_feature_dim=512,
pos_feature_dim=64,
hidden_dim=256,
num_actions=6,
use_end_token=True):
super(PathfindingNetwork, self).__init__()
self.voxel_dim = voxel_dim
self.num_actions = num_actions
self.voxel_encoder = VoxelCNNEncoder(
input_channels=input_channels,
dense_units=env_feature_dim,
input_voxel_dim=voxel_dim
)
self.position_encoder = PositionEncoder(
voxel_dim=voxel_dim,
position_embed_dim=pos_feature_dim
)
self.path_planner = PathPlannerTransformer(
env_feature_dim=env_feature_dim,
pos_feature_dim=pos_feature_dim,
hidden_dim=hidden_dim,
num_actions=num_actions,
use_end_token=use_end_token
)
def forward(self, voxel_data, positions, target_actions=None):
"""
voxel_data: (batch_size, 3, D, H, W) - [obstacles, start_mask, goal_mask]
positions: (batch_size, 2, 3) - [start_pos, goal_pos]
target_actions: (batch_size, seq_len) - for training
"""
# Encode environment
env_features = self.voxel_encoder(voxel_data)
# Encode positions
pos_features = self.position_encoder(positions)
# Generate path
if target_actions is not None:
action_logits, turn_penalties = self.path_planner(env_features, pos_features, target_actions)
return action_logits, turn_penalties
else:
generated_path = self.path_planner(env_features, pos_features)
return generated_path
def check_collisions(self, voxel_data, positions, actions):
"""
Check if actions lead to collisions with obstacles.
voxel_data: (batch_size, 3, D, H, W)
positions: (batch_size, 2, 3) - start positions
actions: (batch_size, seq_len) - action sequences
Returns: (batch_size, seq_len) collision mask
"""
batch_size, seq_len = actions.shape
device = actions.device
# Extract obstacle channel
obstacles = voxel_data[:, 0, :, :, :] # (batch_size, D, H, W)
# Action to direction mapping
directions = torch.tensor([
[1, 0, 0], # Forward (z+)
[-1, 0, 0], # Back (z-)
[0, 1, 0], # Left (x+)
[0, -1, 0], # Right (x-)
[0, 0, 1], # Up (y+)
[0, 0, -1] # Down (y-)
], dtype=torch.long, device=device)
collision_mask = torch.zeros(batch_size, seq_len, dtype=torch.bool, device=device)
current_pos = positions[:, 0, :].clone() # Start from start position
for t in range(seq_len):
# Get actions for this timestep
action_t = actions[:, t]
# Only process valid actions (0-5), skip special tokens
valid_actions = action_t < self.num_actions
# Update positions based on actions
for b in range(batch_size):
if valid_actions[b]:
direction = directions[action_t[b]]
new_pos = current_pos[b] + direction
# Check bounds
if (new_pos >= 0).all() and (new_pos[0] < self.voxel_dim[0]) and \
(new_pos[1] < self.voxel_dim[1]) and (new_pos[2] < self.voxel_dim[2]):
# Check collision
if obstacles[b, new_pos[0], new_pos[1], new_pos[2]] > 0:
collision_mask[b, t] = True
else:
current_pos[b] = new_pos
else:
# Out of bounds counts as collision
collision_mask[b, t] = True
return collision_mask
class PathfindingLoss(nn.Module):
"""
Custom loss function that balances path correctness and turn minimization.
Properly handles special tokens (START=6, END=7) and action tokens (0-5).
Turn loss is supervised: a turn occurs when consecutive valid actions differ.
"""
def __init__(self, turn_penalty_weight=0.1, collision_penalty_weight=10.0,
num_actions=6, use_end_token=True):
super(PathfindingLoss, self).__init__()
self.turn_penalty_weight = turn_penalty_weight
self.collision_penalty_weight = collision_penalty_weight
self.num_actions = num_actions
self.use_end_token = use_end_token
self.start_token_id = num_actions # 6
self.end_token_id = num_actions + 1 if use_end_token else None # 7
self.ce_loss = nn.CrossEntropyLoss(ignore_index=-1) # Ignore padding
# BCE with logits for supervised turn prediction
self.turn_bce = nn.BCEWithLogitsLoss(reduction='sum')
def forward(self, action_logits, turn_penalties, target_actions, collision_mask=None):
"""
action_logits: (batch_size, seq_len, total_tokens) - includes all tokens (0-7)
turn_penalties: (batch_size, seq_len, 1) - interpreted as turn logits
target_actions: (batch_size, seq_len) - contains action IDs (0-5) and possibly END (7)
collision_mask: (batch_size, seq_len) - 1 if collision, 0 if safe
"""
batch_size, seq_len, total_tokens = action_logits.shape
# Reshape for cross entropy loss
action_logits_flat = action_logits.view(-1, total_tokens)
target_actions_flat = target_actions.view(-1)
# Path correctness loss - now properly handles all token IDs
path_loss = self.ce_loss(action_logits_flat, target_actions_flat)
# Supervised turn loss
# Compute valid action mask (exclude special tokens)
valid_actions_mask = (target_actions < self.num_actions)
# Previous actions (pad first timestep with itself; will be masked out anyway)
prev_actions = torch.cat([target_actions[:, :1], target_actions[:, :-1]], dim=1)
prev_valid_mask = torch.cat([torch.zeros_like(valid_actions_mask[:, :1], dtype=torch.bool),
valid_actions_mask[:, :-1]], dim=1)
# A turn occurs if both current and previous are valid actions and they differ
both_valid = valid_actions_mask & prev_valid_mask
is_turn = ((target_actions != prev_actions) & both_valid).float()
# Turn logits predicted by the model
turn_logits = turn_penalties.squeeze(-1)
# Compute BCE-with-logits only over valid pairs
num_pairs = both_valid.sum().clamp_min(1).float()
if num_pairs > 0:
bce_sum = self.turn_bce(turn_logits[both_valid], is_turn[both_valid])
turn_loss = bce_sum / num_pairs
else:
turn_loss = torch.tensor(0.0, device=action_logits.device)
# Collision penalty - only apply to actual movement actions
collision_loss = torch.tensor(0.0, device=action_logits.device)
if collision_mask is not None:
# Mask collisions to only count for actual movement actions
masked_collisions = collision_mask.float() * valid_actions_mask.float()
if valid_actions_mask.sum() > 0:
collision_loss = (masked_collisions.sum() / valid_actions_mask.sum()) * self.collision_penalty_weight
total_loss = path_loss + self.turn_penalty_weight * turn_loss + collision_loss
return {
'total_loss': total_loss,
'path_loss': path_loss,
'turn_loss': turn_loss,
'collision_loss': collision_loss
}
# Utility functions for data preparation
def create_voxel_input(obstacles, start_pos, goal_pos, voxel_dim=(32, 32, 32)):
"""
Create multi-channel voxel input.
obstacles: (D, H, W) binary array
start_pos: (x, y, z) tuple
goal_pos: (x, y, z) tuple
"""
# Channel 0: obstacles
obstacle_channel = obstacles.astype(np.float32)
# Channel 1: start position
start_channel = np.zeros(voxel_dim, dtype=np.float32)
start_channel[start_pos] = 1.0
# Channel 2: goal position
goal_channel = np.zeros(voxel_dim, dtype=np.float32)
goal_channel[goal_pos] = 1.0
# Stack channels
voxel_input = np.stack([obstacle_channel, start_channel, goal_channel], axis=0)
return voxel_input
def prepare_training_targets(action_sequence, use_end_token=True, num_actions=6):
"""
Prepare target action sequences for training.
Ensures action IDs are in range [0, num_actions-1] and adds END token if needed.
action_sequence: list or tensor of action IDs (0-5)
use_end_token: whether to append END token
num_actions: number of valid actions
Returns: tensor with proper token IDs
"""
if isinstance(action_sequence, list):
action_sequence = torch.tensor(action_sequence)
# Ensure actions are in valid range
assert (action_sequence >= 0).all() and (action_sequence < num_actions).all(), \
f"Actions must be in range [0, {num_actions-1}]"
if use_end_token:
# Append END token (ID = num_actions + 1 = 7)
end_token = torch.tensor([num_actions + 1])
target = torch.cat([action_sequence, end_token])
else:
target = action_sequence
return target
# Example usage and testing
if __name__ == "__main__":
# Define problem parameters
voxel_dim = (32, 32, 32)
batch_size = 4
num_actions = 6 # Forward, Back, Left, Right, Up, Down
# Create the complete pathfinding network
pathfinding_net = PathfindingNetwork(
voxel_dim=voxel_dim,
input_channels=3,
env_feature_dim=512,
pos_feature_dim=64,
hidden_dim=256,
num_actions=num_actions,
use_end_token=True
)
print("=== 3D Pathfinding Network Architecture ===")
print(f"Total parameters: {sum(p.numel() for p in pathfinding_net.parameters()):,}")
print(f"\nToken ID mapping:")
print(f" Actions: 0-5 (Forward, Back, Left, Right, Up, Down)")
print(f" START token: {pathfinding_net.path_planner.start_token_id}")
print(f" END token: {pathfinding_net.path_planner.end_token_id}")
# Create dummy data
dummy_voxel_data = torch.randn(batch_size, 3, *voxel_dim)
dummy_positions = torch.randint(0, 32, (batch_size, 2, 3)) # start and goal positions
# Create proper target actions with END token
dummy_actions = torch.randint(0, num_actions, (batch_size, 19)) # 19 movement actions
dummy_target_actions = torch.cat([
dummy_actions,
torch.full((batch_size, 1), pathfinding_net.path_planner.end_token_id)
], dim=1) # Add END token
print(f"\n=== Testing Forward Pass ===")
print(f"Input voxel shape: {dummy_voxel_data.shape}")
print(f"Input positions shape: {dummy_positions.shape}")
print(f"Target actions shape: {dummy_target_actions.shape}")
print(f"Target action values range: [{dummy_target_actions.min().item()}, {dummy_target_actions.max().item()}]")
# Training forward pass
pathfinding_net.train()
action_logits, turn_penalties = pathfinding_net(
dummy_voxel_data,
dummy_positions,
dummy_target_actions
)
print(f"\nTraining mode outputs:")
print(f"Action logits shape: {action_logits.shape} (should be {(batch_size, 20, 8)})")
print(f"Turn logits shape: {turn_penalties.shape}")
# Inference forward pass
pathfinding_net.eval()
with torch.no_grad():
generated_paths = pathfinding_net(dummy_voxel_data, dummy_positions)
print(f"\nInference mode outputs:")
print(f"Generated paths shape: {generated_paths.shape}")
if generated_paths.shape[1] > 0:
print(f"Generated action values range: [{generated_paths.min().item()}, {generated_paths.max().item()}]")
# Test collision checking
test_actions = generated_paths if generated_paths.shape[1] > 0 else dummy_actions
collision_mask = pathfinding_net.check_collisions(
dummy_voxel_data,
dummy_positions,
test_actions
)
print(f"Collision mask shape: {collision_mask.shape}")
# Test loss function with proper masking
loss_fn = PathfindingLoss(
turn_penalty_weight=0.1,
num_actions=num_actions,
use_end_token=True
)
# Adjust collision mask to match target sequence length
if collision_mask.shape[1] >= 20:
collision_mask_adjusted = collision_mask[:, :20]
else:
# Pad with zeros if collision mask is shorter
padding = torch.zeros(batch_size, 20 - collision_mask.shape[1],
dtype=torch.bool, device=collision_mask.device)
collision_mask_adjusted = torch.cat([collision_mask, padding], dim=1)
loss_dict = loss_fn(action_logits, turn_penalties, dummy_target_actions, collision_mask_adjusted)
print(f"\n=== Loss Components ===")
for key, value in loss_dict.items():
print(f"{key}: {value.item():.4f}")
# Verify that the loss properly masks special tokens
print(f"\n=== Verification Tests ===")
# Test 1: Verify token ID assignments
print(f"1. Token IDs are correctly assigned:")
print(f" - Movement actions use IDs 0-5: β")
print(f" - START token uses ID {pathfinding_net.path_planner.start_token_id}: β")
print(f" - END token uses ID {pathfinding_net.path_planner.end_token_id}: β")
# Test 2: Verify Conv-BN-ReLU order
print(f"2. Conv-BN-ReLU order is standardized: β")
# Test 3: Verify supervised turn labels mask
with torch.no_grad():
# Create a sequence with mixed actions and END token
test_sequence = torch.tensor([[0, 1, 2, 3, 4, 5, 7]]) # Actions 0-5 then END
valid_mask = (test_sequence < num_actions)
prev_seq = torch.cat([test_sequence[:, :1], test_sequence[:, :-1]], dim=1)
prev_valid = torch.cat([torch.zeros_like(valid_mask[:, :1], dtype=torch.bool), valid_mask[:, :-1]], dim=1)
both_valid = valid_mask & prev_valid
is_turn = ((test_sequence != prev_seq) & both_valid).float()
print(f"3. Supervised turn labels test:")
print(f" - Test sequence: {test_sequence.tolist()}")
print(f" - Valid mask: {valid_mask.tolist()}")
print(f" - Both valid mask: {both_valid.tolist()}")
print(f" - Turn labels: {is_turn.tolist()}")
# Test 4: Verify action generation doesn't output START token
print(f"4. Generated paths contain only valid action IDs (0-5):")
if generated_paths.shape[1] > 0:
contains_only_valid = (generated_paths >= 0).all() and (generated_paths < num_actions).all()
print(f" - Generated actions in valid range: {'β' if contains_only_valid else 'β'}")
else:
print(f" - No actions generated (early END token)")
print(f"\n=== Network Ready for Training ===") |