File size: 2,776 Bytes
f3a2982
 
9b93c03
 
f3a2982
9b93c03
 
f3a2982
 
 
 
 
 
 
 
 
 
 
 
 
9b93c03
f3a2982
9b93c03
 
f3a2982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: c14kevincardenas/ClimBEiT-t3
tags:
- knowledge_distillation
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224_alpha0.7_temp3.0_t3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224_alpha0.7_temp3.0_t3

This model is a fine-tuned version of [c14kevincardenas/ClimBEiT-t3](https://huggingface.co/c14kevincardenas/ClimBEiT-t3) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7700
- Accuracy: 0.7961

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5659        | 1.0   | 164  | 1.4280          | 0.2636   |
| 0.5111        | 2.0   | 328  | 1.3040          | 0.3720   |
| 0.4093        | 3.0   | 492  | 0.9968          | 0.6356   |
| 0.3598        | 4.0   | 656  | 0.9535          | 0.6443   |
| 0.3284        | 5.0   | 820  | 0.8426          | 0.7256   |
| 0.2933        | 6.0   | 984  | 0.8269          | 0.7657   |
| 0.2734        | 7.0   | 1148 | 0.8815          | 0.6952   |
| 0.2679        | 8.0   | 1312 | 0.8079          | 0.7679   |
| 0.2574        | 9.0   | 1476 | 0.7823          | 0.7863   |
| 0.2403        | 10.0  | 1640 | 0.7833          | 0.7907   |
| 0.2376        | 11.0  | 1804 | 0.7851          | 0.7852   |
| 0.2399        | 12.0  | 1968 | 0.7966          | 0.7939   |
| 0.231         | 13.0  | 2132 | 0.7956          | 0.7766   |
| 0.2351        | 14.0  | 2296 | 0.7793          | 0.7918   |
| 0.2344        | 15.0  | 2460 | 0.7700          | 0.7961   |
| 0.232         | 16.0  | 2624 | 0.7845          | 0.7907   |
| 0.2318        | 17.0  | 2788 | 0.7930          | 0.7918   |
| 0.2241        | 18.0  | 2952 | 0.7814          | 0.7885   |
| 0.2291        | 19.0  | 3116 | 0.7901          | 0.7820   |
| 0.2227        | 20.0  | 3280 | 0.7854          | 0.7885   |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1