--- language: - multilingual - ar - zh - cs - da - nl - en - fi - fr - de - he - hu - it - ja - ko - 'no' - pl - pt - ru - es - sv - th - tr - uk license: mit license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE pipeline_tag: text-generation tags: - nlp - code base_model: microsoft/Phi-4-mini-instruct --- # Phi-4-mini-instruct-fp16-ov * Model creator: [Microsoft](https://huggingface.co/microsoft) * Original model: [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) ```cli optimum-cli export openvino --model microsoft/phi-4-mini-instruct --task text-generation-with-past --weight-format fp16 --trust-remote-code phi-4-mini-instruct\FP16 ``` ## Description This is [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to FP16. ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2025.2.0 and higher * Optimum Intel 1.23.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "OpenVINO/Phi-4-mini-instruct-fp16-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id, trust_remote_code=True) inputs = tokenizer("What is OpenVINO?", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to [the Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install -U openvino openvino-tokenizers openvino-genai pip install huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "OpenVINO/Phi-4-mini-instruct-fp16-ov" model_path = "Phi-4-mini-instruct-fp16-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) print(pipe.generate("What is OpenVINO?", max_length=200)) ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) You can find more detaild usage examples in OpenVINO Notebooks: - [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM) - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation) ## Limitations Check the original model card for [original model card](ttps://huggingface.co/microsoft/Phi-4-mini-instruct) for limitations. ## Legal information The original model is distributed under [mit](https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE) license. More details can be found in [original model card](ttps://huggingface.co/microsoft/Phi-4-mini-instruct). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.