File size: 1,841 Bytes
cfef5c1
 
ade9e46
cfef5c1
 
ade9e46
 
cfef5c1
112a732
cfef5c1
ade9e46
 
 
 
 
 
cfef5c1
 
 
 
 
4dc468b
cfef5c1
4309bf8
 
cfef5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a486ac0
cfef5c1
a486ac0
 
 
 
 
 
 
4309bf8
cfef5c1
 
 
 
 
 
 
ade9e46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-4B-Base
tags:
- llm
- indic
model-index:
- name: Hex-1
  results: []
language:
- hi
- te
- ta
- ml
- kn
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Hex-1

Hex-1 is a 4-billion parameter language model specifically optimized for Indian languages. It supports five major Indian languages, including Hindi, Kannada, Telugu, Tamil and Malayalam. 
When benchmarked against leading models like Gemma-2B, LLaMA-3.2-3B, and Sarvam-1, Hex1 delivers best-in-class performance in all five supported languages on MMLU dataset. 

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- total_train_batch_size: 56
- total_eval_batch_size: 56
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results - Multilingual Task Performance Comparison

| Language   | Hellaswag | ARC-c  | ARC-e  | MMLU   | BoolQ  |
|------------|-----------|--------|--------|--------|--------|
| Hindi      | 47.85     | 36.68  | 52.14  | 46.73  | 57.61  |
| Tamil      | 49.45     | 38.65  | 53.45  | 44.71  | 45.87  |
| Telugu     | 50.84     | 37.96  | 53.36  | 46.85  | 51.89  |
| Kannada    | 52.16     | 38.31  | 53.11  | 46.38  | 52.32  |
| Malayalam  | 46.32     | 29.60  | 40.86  | 43.63  | 46.69  |



### Framework versions

- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1