Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- John6666/wai-shuffle-noob-v20-sdxl
|
4 |
+
tags:
|
5 |
+
- quantization
|
6 |
+
quantized_by: btaskel
|
7 |
+
pipeline_tag: text-to-image
|
8 |
+
---
|
9 |
+
From civitai/fannon:
|
10 |
+
https://civitai.com/models/989367/wai-shuffle-noob
|
11 |
+
|
12 |
+
Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.
|
13 |
+
|
14 |
+
In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.
|
15 |
+
|
16 |
+
根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点
|
17 |
+
|
18 |
+
在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。
|
19 |
+
|
20 |
+
----------
|
21 |
+
|
22 |
+
You have amazing hardware?!
|
23 |
+
|
24 |
+
I'm using 16GB DDR RAM and an R5 5600 for interest-based quantization work, along with a 50Mbps bandwidth speed. It might not be able to quantize models with higher parameters.
|
25 |
+
|
26 |
+
您有惊人的硬件??!
|
27 |
+
|
28 |
+
我正在使用16G DDR内存和R5 5600进行基于兴趣的量化工作,以及50Mbps的带宽速度,可能会无法为更高参数的模型进行量化。
|