btaskel commited on
Commit
8563b81
·
verified ·
1 Parent(s): c5f1f20

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - John6666/wai-shuffle-noob-v20-sdxl
4
+ tags:
5
+ - quantization
6
+ quantized_by: btaskel
7
+ pipeline_tag: text-to-image
8
+ ---
9
+ From civitai/fannon:
10
+ https://civitai.com/models/989367/wai-shuffle-noob
11
+
12
+ Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.
13
+
14
+ In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.
15
+
16
+ 根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点
17
+
18
+ 在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。
19
+
20
+ ----------
21
+
22
+ You have amazing hardware?!
23
+
24
+ I'm using 16GB DDR RAM and an R5 5600 for interest-based quantization work, along with a 50Mbps bandwidth speed. It might not be able to quantize models with higher parameters.
25
+
26
+ 您有惊人的硬件??!
27
+
28
+ 我正在使用16G DDR内存和R5 5600进行基于兴趣的量化工作,以及50Mbps的带宽速度,可能会无法为更高参数的模型进行量化。