File size: 665 Bytes
8161e2d
 
 
 
 
 
 
 
 
9f0ea45
8161e2d
 
 
c403ad7
8161e2d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
---
base_model:
- Laxhar/noobai-XL-Vpred-1.0
tags:
- quantization
quantized_by: btaskel
pipeline_tag: text-to-image
---
From Laxhar/noobai-XL-Vpred-1.0 Harem:
https://huggingface.co/Laxhar/noobai-XL-Vpred-1.0

Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.

In some benchmarks, selecting a large-parameter high-quantization LLM tends to perform better than a small-parameter low-quantization LLM.

根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点

在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。