File size: 745 Bytes
f82e87b
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b9ee3
f82e87b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
---
language:
- zh
base_model:
- Seikaijyu/RWKV7-2.9B-v3-UnlimitedRP-mini-novel-chat-preview
tags:
- quantization
quantized_by: btaskel
---
From Seikaijyu/RWKV7-2.9B-v3-UnlimitedRP-mini-novel-chat-preview:
https://huggingface.co/Seikaijyu/RWKV7-2.9B-v3-UnlimitedRP-mini-novel-chat-preview

Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.

In some benchmarks, selecting a large-parameter high-quantization LLM tends to perform better than a small-parameter low-quantization LLM.

根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点

在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。