--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: flan-t5-small-hallucination-text-classification results: [] --- # flan-t5-small-hallucination-text-classification This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7901 - Precision: 0.7429 - Recall: 0.7450 - F1: 0.7428 - Accuracy: 0.7450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4967 | 0.4016 | 100 | 0.8049 | 0.7429 | 0.7349 | 0.7248 | 0.7349 | | 0.4829 | 0.8032 | 200 | 0.7162 | 0.7284 | 0.7319 | 0.7261 | 0.7319 | | 0.3966 | 1.2048 | 300 | 0.8576 | 0.7526 | 0.7530 | 0.7486 | 0.7530 | | 0.3115 | 1.6064 | 400 | 0.8358 | 0.7443 | 0.7450 | 0.7438 | 0.7450 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1