--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: custom-flan-t5-small-hallucination-classification results: [] --- # custom-flan-t5-small-hallucination-classification This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6767 - Precision: 0.7253 - Recall: 0.7289 - F1: 0.7248 - Accuracy: 0.7289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8953 | 0.4016 | 100 | 0.8406 | 0.6192 | 0.5994 | 0.5096 | 0.5994 | | 0.7764 | 0.8032 | 200 | 0.7486 | 0.7113 | 0.7088 | 0.6951 | 0.7088 | | 0.7031 | 1.2048 | 300 | 0.7159 | 0.7358 | 0.7309 | 0.7201 | 0.7309 | | 0.6345 | 1.6064 | 400 | 0.6767 | 0.7253 | 0.7289 | 0.7248 | 0.7289 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1