Text Classification
Transformers
Safetensors
English
bert
multi-text-classification
classification
intent-classification
intent-detection
nlp
natural-language-processing
edge-ai
iot
smart-home
location-intelligence
voice-assistant
conversational-ai
real-time
bert-local
bert-mini
local-search
business-category-classification
fast-inference
lightweight-model
on-device-nlp
offline-nlp
mobile-ai
multilingual-nlp
intent-routing
category-detection
query-understanding
artificial-intelligence
assistant-ai
smart-cities
customer-support
productivity-tools
contextual-ai
semantic-search
user-intent
microservices
smart-query-routing
industry-application
aiops
domain-specific-nlp
location-aware-ai
intelligent-routing
edge-nlp
smart-query-classifier
zero-shot-classification
smart-search
location-awareness
contextual-intelligence
geolocation
query-classification
multilingual-intent
chatbot-nlp
enterprise-ai
sdk-integration
api-ready
developer-tools
real-world-ai
geo-intelligence
embedded-ai
smart-routing
voice-interface
smart-devices
contextual-routing
fast-nlp
data-driven-ai
inference-optimization
digital-assistants
neural-nlp
ai-automation
lightweight-transformers
Update README.md
Browse files
README.md
CHANGED
@@ -351,217 +351,8 @@ bert-local is trained using **bert-mini** for multi-class text classification. H
|
|
351 |
```
|
352 |
|
353 |
### Training Code
|
354 |
-
|
355 |
-
|
356 |
-
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments, TrainerCallback
|
357 |
-
from sklearn.model_selection import train_test_split
|
358 |
-
from sklearn.metrics import accuracy_score, f1_score
|
359 |
-
import torch
|
360 |
-
from torch.utils.data import Dataset
|
361 |
-
import shutil
|
362 |
-
from tqdm import tqdm
|
363 |
-
import numpy as np
|
364 |
-
|
365 |
-
# === 0. Define model and output paths ===
|
366 |
-
MODEL_NAME = "bert-mini"
|
367 |
-
OUTPUT_DIR = "./bert-local"
|
368 |
-
|
369 |
-
# === 1. Custom callback for tqdm progress bar ===
|
370 |
-
class TQDMProgressBarCallback(TrainerCallback):
|
371 |
-
def __init__(self):
|
372 |
-
super().__init__()
|
373 |
-
self.progress_bar = None
|
374 |
-
|
375 |
-
def on_train_begin(self, args, state, control, **kwargs):
|
376 |
-
self.total_steps = state.max_steps
|
377 |
-
self.progress_bar = tqdm(total=self.total_steps, desc="Training", unit="step")
|
378 |
-
|
379 |
-
def on_step_end(self, args, state, control, **kwargs):
|
380 |
-
self.progress_bar.update(1)
|
381 |
-
self.progress_bar.set_postfix({
|
382 |
-
"epoch": f"{state.epoch:.2f}",
|
383 |
-
"step": state.global_step
|
384 |
-
})
|
385 |
-
|
386 |
-
def on_train_end(self, args, state, control, **kwargs):
|
387 |
-
if self.progress_bar is not None:
|
388 |
-
self.progress_bar.close()
|
389 |
-
self.progress_bar = None
|
390 |
-
|
391 |
-
# === 2. Load and preprocess data ===
|
392 |
-
dataset_path = 'dataset.csv'
|
393 |
-
df = pd.read_csv(dataset_path)
|
394 |
-
df = df.dropna(subset=['category'])
|
395 |
-
df.columns = ['label', 'text'] # Rename columns
|
396 |
-
|
397 |
-
# === 3. Encode labels ===
|
398 |
-
labels = sorted(df["label"].unique())
|
399 |
-
label_to_id = {label: idx for idx, label in enumerate(labels)}
|
400 |
-
id_to_label = {idx: label for label, idx in label_to_id.items()}
|
401 |
-
df['label'] = df['label'].map(label_to_id)
|
402 |
-
|
403 |
-
# === 4. Train-val split ===
|
404 |
-
train_texts, val_texts, train_labels, val_labels = train_test_split(
|
405 |
-
df['text'].tolist(), df['label'].tolist(), test_size=0.2, random_state=42, stratify=df['label']
|
406 |
-
)
|
407 |
-
|
408 |
-
# === 5. Tokenizer ===
|
409 |
-
tokenizer = BertTokenizer.from_pretrained(MODEL_NAME)
|
410 |
-
|
411 |
-
# === 6. Dataset class ===
|
412 |
-
class CategoryDataset(Dataset):
|
413 |
-
def __init__(self, texts, labels, tokenizer, max_length=128):
|
414 |
-
self.texts = texts
|
415 |
-
self.labels = labels
|
416 |
-
self.tokenizer = tokenizer
|
417 |
-
self.max_length = max_length
|
418 |
-
|
419 |
-
def __len__(self):
|
420 |
-
return len(self.texts)
|
421 |
-
|
422 |
-
def __getitem__(self, idx):
|
423 |
-
encoding = self.tokenizer(
|
424 |
-
self.texts[idx],
|
425 |
-
padding='max_length',
|
426 |
-
truncation=True,
|
427 |
-
max_length=self.max_length,
|
428 |
-
return_tensors='pt'
|
429 |
-
)
|
430 |
-
return {
|
431 |
-
'input_ids': encoding['input_ids'].squeeze(0),
|
432 |
-
'attention_mask': encoding['attention_mask'].squeeze(0),
|
433 |
-
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
|
434 |
-
}
|
435 |
-
|
436 |
-
# === 7. Load datasets ===
|
437 |
-
train_dataset = CategoryDataset(train_texts, train_labels, tokenizer)
|
438 |
-
val_dataset = CategoryDataset(val_texts, val_labels, tokenizer)
|
439 |
-
|
440 |
-
# === 8. Load model with num_labels ===
|
441 |
-
model = BertForSequenceClassification.from_pretrained(
|
442 |
-
MODEL_NAME,
|
443 |
-
num_labels=len(label_to_id)
|
444 |
-
)
|
445 |
-
|
446 |
-
# === 9. Define metrics for evaluation ===
|
447 |
-
def compute_metrics(eval_pred):
|
448 |
-
logits, labels = eval_pred
|
449 |
-
predictions = np.argmax(logits, axis=-1)
|
450 |
-
acc = accuracy_score(labels, predictions)
|
451 |
-
f1 = f1_score(labels, predictions, average='weighted')
|
452 |
-
return {
|
453 |
-
'accuracy': acc,
|
454 |
-
'f1_weighted': f1,
|
455 |
-
}
|
456 |
-
|
457 |
-
# === 10. Training arguments ===
|
458 |
-
training_args = TrainingArguments(
|
459 |
-
output_dir='./results',
|
460 |
-
run_name="bert-local",
|
461 |
-
num_train_epochs=5,
|
462 |
-
per_device_train_batch_size=16,
|
463 |
-
per_device_eval_batch_size=16,
|
464 |
-
warmup_steps=500,
|
465 |
-
weight_decay=0.01,
|
466 |
-
logging_dir='./logs',
|
467 |
-
logging_steps=10,
|
468 |
-
eval_strategy="epoch",
|
469 |
-
report_to="none"
|
470 |
-
)
|
471 |
-
|
472 |
-
# === 11. Trainer setup ===
|
473 |
-
trainer = Trainer(
|
474 |
-
model=model,
|
475 |
-
args=training_args,
|
476 |
-
train_dataset=train_dataset,
|
477 |
-
eval_dataset=val_dataset,
|
478 |
-
compute_metrics=compute_metrics,
|
479 |
-
callbacks=[TQDMProgressBarCallback()]
|
480 |
-
)
|
481 |
-
|
482 |
-
# === 12. Train and evaluate ===
|
483 |
-
trainer.train()
|
484 |
-
trainer.evaluate()
|
485 |
-
|
486 |
-
# === 13. Save model and tokenizer ===
|
487 |
-
model.config.label2id = label_to_id
|
488 |
-
model.config.id2label = id_to_label
|
489 |
-
model.config.num_labels = len(label_to_id)
|
490 |
-
|
491 |
-
model.save_pretrained(OUTPUT_DIR)
|
492 |
-
tokenizer.save_pretrained(OUTPUT_DIR)
|
493 |
-
|
494 |
-
# === 14. Zip model directory ===
|
495 |
-
shutil.make_archive("bert-local", 'zip', OUTPUT_DIR)
|
496 |
-
print("✅ Training complete. Model and tokenizer saved to ./bert-local")
|
497 |
-
print("✅ Model directory zipped to bert-local.zip")
|
498 |
-
|
499 |
-
# === 15. Test function with confidence threshold ===
|
500 |
-
def run_test_cases(model, tokenizer, test_sentences, label_to_id, id_to_label, confidence_threshold=0.5):
|
501 |
-
model.eval()
|
502 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
503 |
-
model.to(device)
|
504 |
-
|
505 |
-
correct = 0
|
506 |
-
total = len(test_sentences)
|
507 |
-
results = []
|
508 |
-
|
509 |
-
for text, expected_label in test_sentences:
|
510 |
-
encoding = tokenizer(
|
511 |
-
text,
|
512 |
-
padding='max_length',
|
513 |
-
truncation=True,
|
514 |
-
max_length=128,
|
515 |
-
return_tensors='pt'
|
516 |
-
)
|
517 |
-
input_ids = encoding['input_ids'].to(device)
|
518 |
-
attention_mask = encoding['attention_mask'].to(device)
|
519 |
-
|
520 |
-
with torch.no_grad():
|
521 |
-
outputs = model(input_ids, attention_mask=attention_mask)
|
522 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
523 |
-
max_prob, predicted_id = torch.max(probs, dim=1)
|
524 |
-
predicted_label = id_to_label[predicted_id.item()]
|
525 |
-
if max_prob.item() < confidence_threshold:
|
526 |
-
predicted_label = "unknown"
|
527 |
-
|
528 |
-
is_correct = (predicted_label == expected_label)
|
529 |
-
if is_correct:
|
530 |
-
correct += 1
|
531 |
-
results.append({
|
532 |
-
"sentence": text,
|
533 |
-
"expected": expected_label,
|
534 |
-
"predicted": predicted_label,
|
535 |
-
"confidence": max_prob.item(),
|
536 |
-
"correct": is_correct
|
537 |
-
})
|
538 |
-
|
539 |
-
accuracy = correct / total * 100
|
540 |
-
print(f"\nTest Cases Accuracy: {accuracy:.2f}% ({correct}/{total} correct)")
|
541 |
-
|
542 |
-
for r in results:
|
543 |
-
status = "✓" if r["correct"] else "✗"
|
544 |
-
print(f"{status} '{r['sentence']}'")
|
545 |
-
print(f" Expected: {r['expected']}, Predicted: {r['predicted']}, Confidence: {r['confidence']:.3f}")
|
546 |
-
|
547 |
-
assert accuracy >= 70, f"Test failed: Accuracy {accuracy:.2f}% < 70%"
|
548 |
-
return results
|
549 |
-
|
550 |
-
# === 16. Sample test sentences for testing ===
|
551 |
-
test_sentences = [
|
552 |
-
("Where is the nearest airport to this location?", "airport"),
|
553 |
-
("Can I bring a laptop through airport security?", "airport"),
|
554 |
-
("How do I get to the closest airport terminal?", "airport"),
|
555 |
-
("Need help finding an accounting firm for tax planning.", "accounting firm"),
|
556 |
-
("Can an accounting firm help with financial audits?", "accounting firm"),
|
557 |
-
("Looking for an accounting firm to manage payroll.", "accounting firm"),
|
558 |
-
]
|
559 |
-
|
560 |
-
print("\nRunning test cases...")
|
561 |
-
test_results = run_test_cases(model, tokenizer, test_sentences, label_to_id, id_to_label)
|
562 |
-
print("✅ Test cases completed.")
|
563 |
-
```
|
564 |
-
|
565 |
---
|
566 |
|
567 |
## Evaluation 📈
|
|
|
351 |
```
|
352 |
|
353 |
### Training Code
|
354 |
+
- 📍 Get training [Source Code](https://huggingface.co/boltuix/bert-local/blob/main/colab_training_code.ipynb) 🌟
|
355 |
+
- 📍 Dataset (comming soon..)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
---
|
357 |
|
358 |
## Evaluation 📈
|