boltuix commited on
Commit
bc0e85c
·
verified ·
1 Parent(s): 94730fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -2
README.md CHANGED
@@ -33,6 +33,26 @@ tags:
33
  - lightweight
34
  - mobile-nlp
35
  - ner
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  metrics:
37
  - accuracy
38
  - f1
@@ -43,7 +63,7 @@ library_name: transformers
43
 
44
  ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiXuCVtFRol6PCwE1ndpw4TE8C_tbbRYPBkzCnriupCjUG9UsYoviXpe43Ud-hkX-G6dDk1EYaTdEkTz38BgmMvprAYzSK8MIZ8CaCVY7m7gAu_ghWYjxKJPzS53LLiuNv7O5uG23ou1Ot137ORyz9bFA8KIKQHoj0BojJ8nHeItuHXD68SlisTZuQ2z8E/s16000/bert-%20lite.jpg)
45
 
46
- # 🧠 BERT-Lite Ultra-Lightweight BERT for Edge & IoT Efficiency 🚀
47
 
48
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
49
  [![Model Size](https://img.shields.io/badge/Size-~10MB-blue)](#)
@@ -72,7 +92,11 @@ library_name: transformers
72
 
73
  ## Overview
74
 
75
- `BERT-Lite` is an **ultra-lightweight** NLP model derived from **google/bert_uncased_L-2_H-64_A-2**, optimized for **real-time inference** on **edge and IoT devices**. With a quantized size of **~10MB** and **~2M parameters**, it delivers efficient contextual language understanding for highly resource-constrained environments like microcontrollers, wearables, and smart home devices. Designed for **low-latency** and **offline operation**, BERT-Lite is perfect for privacy-first applications requiring intent detection, text classification, or semantic understanding with minimal connectivity.
 
 
 
 
76
 
77
  - **Model Name**: BERT-Lite
78
  - **Size**: ~10MB (quantized)
 
33
  - lightweight
34
  - mobile-nlp
35
  - ner
36
+ - on-device-nlp
37
+ - privacy-first
38
+ - cpu-inference
39
+ - speech-intent
40
+ - offline-nlp
41
+ - tiny-bert
42
+ - bert-variant
43
+ - efficient-nlp
44
+ - edge-ml
45
+ - tiny-ml
46
+ - aiot
47
+ - embedded-nlp
48
+ - low-latency
49
+ - smart-devices
50
+ - edge-inference
51
+ - ml-on-microcontrollers
52
+ - android-nlp
53
+ - offline-chatbot
54
+ - esp32-nlp
55
+ - tflite-compatible
56
  metrics:
57
  - accuracy
58
  - f1
 
63
 
64
  ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiXuCVtFRol6PCwE1ndpw4TE8C_tbbRYPBkzCnriupCjUG9UsYoviXpe43Ud-hkX-G6dDk1EYaTdEkTz38BgmMvprAYzSK8MIZ8CaCVY7m7gAu_ghWYjxKJPzS53LLiuNv7O5uG23ou1Ot137ORyz9bFA8KIKQHoj0BojJ8nHeItuHXD68SlisTZuQ2z8E/s16000/bert-%20lite.jpg)
65
 
66
+ # 🧠 BERT-Lite : Ultra-Lightweight BERT for Edge & IoT Efficiency 🚀
67
 
68
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
69
  [![Model Size](https://img.shields.io/badge/Size-~10MB-blue)](#)
 
92
 
93
  ## Overview
94
 
95
+ **BERT-Lite** is an **ultra-lightweight**, general-purpose NLP model derived from [google/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased), designed for **real-time inference** in highly constrained environments such as **edge devices, microcontrollers, and smart home systems**.
96
+
97
+ With a quantized size of just **~10MB** and **~2M parameters**, BERT-Lite enables efficient **contextual language understanding** for both **general NLP tasks** and **resource-sensitive applications**.
98
+
99
+ Whether you're building a privacy-first mobile app, an offline assistant, or a smart IoT device, BERT-Lite offers fast, accurate NLP performance without relying on cloud services.
100
 
101
  - **Model Name**: BERT-Lite
102
  - **Size**: ~10MB (quantized)