Vittorio Pippi
commited on
Commit
·
19d8873
1
Parent(s):
2226641
Test previous version
Browse files- modeling_emuru.bkp.py +316 -0
- modeling_emuru.py +97 -231
modeling_emuru.bkp.py
ADDED
|
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer
|
| 4 |
+
from configuration_emuru import EmuruConfig
|
| 5 |
+
from diffusers import AutoencoderKL
|
| 6 |
+
from einops.layers.torch import Rearrange
|
| 7 |
+
from einops import repeat
|
| 8 |
+
from torchvision.transforms import functional as F
|
| 9 |
+
from typing import Optional, Tuple, List, Any
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
class Emuru(PreTrainedModel):
|
| 13 |
+
config_class = EmuruConfig
|
| 14 |
+
"""
|
| 15 |
+
Emuru is a conditional generative model that integrates a T5-based decoder with a VAE
|
| 16 |
+
for image generation conditioned on text and style images.
|
| 17 |
+
|
| 18 |
+
Attributes:
|
| 19 |
+
config_class (Type): Configuration class for the model.
|
| 20 |
+
tokenizer (AutoTokenizer): Tokenizer loaded from the provided tokenizer configuration.
|
| 21 |
+
T5 (T5ForConditionalGeneration): T5 model adapted for conditional generation.
|
| 22 |
+
sos (nn.Embedding): Start-of-sequence embedding.
|
| 23 |
+
vae_to_t5 (nn.Linear): Linear projection from VAE latent space to T5 hidden space.
|
| 24 |
+
t5_to_vae (nn.Linear): Linear projection from T5 hidden space back to VAE latent space.
|
| 25 |
+
padding_token (nn.Parameter): Non-trainable parameter for padding tokens.
|
| 26 |
+
padding_token_threshold (nn.Parameter): Non-trainable parameter for padding token threshold.
|
| 27 |
+
vae (AutoencoderKL): Pre-trained Variational Autoencoder.
|
| 28 |
+
query_rearrange (Rearrange): Layer to rearrange VAE latent representations for queries.
|
| 29 |
+
z_rearrange (Rearrange): Layer to rearrange T5 outputs back to VAE latent dimensions.
|
| 30 |
+
mse_criterion (nn.MSELoss): Mean squared error loss function.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
def __init__(self, config: EmuruConfig) -> None:
|
| 34 |
+
"""
|
| 35 |
+
Initialize the Emuru model.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
config (EmuruConfig): Configuration object containing model hyperparameters and paths.
|
| 39 |
+
"""
|
| 40 |
+
super().__init__(config)
|
| 41 |
+
|
| 42 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_config)
|
| 43 |
+
|
| 44 |
+
t5_config = T5Config.from_pretrained(config.t5_config)
|
| 45 |
+
t5_config.vocab_size = len(self.tokenizer)
|
| 46 |
+
self.T5 = T5ForConditionalGeneration(t5_config)
|
| 47 |
+
self.T5.lm_head = nn.Identity()
|
| 48 |
+
self.sos = nn.Embedding(1, t5_config.d_model)
|
| 49 |
+
|
| 50 |
+
vae_latent_size = 8 * config.vae_channels * config.slices_per_query
|
| 51 |
+
self.vae_to_t5 = nn.Linear(vae_latent_size, t5_config.d_model)
|
| 52 |
+
self.t5_to_vae = nn.Linear(t5_config.d_model, vae_latent_size, bias=False)
|
| 53 |
+
|
| 54 |
+
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False)
|
| 55 |
+
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False)
|
| 56 |
+
|
| 57 |
+
self.vae = AutoencoderKL.from_pretrained(config.vae_config)
|
| 58 |
+
self.set_training(self.vae, False)
|
| 59 |
+
|
| 60 |
+
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query)
|
| 61 |
+
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query)
|
| 62 |
+
|
| 63 |
+
self.mse_criterion = nn.MSELoss()
|
| 64 |
+
self.init_weights()
|
| 65 |
+
|
| 66 |
+
def set_training(self, model: nn.Module, training: bool) -> None:
|
| 67 |
+
"""
|
| 68 |
+
Set the training mode for a given model and freeze/unfreeze parameters accordingly.
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
model (nn.Module): The model to set the training mode for.
|
| 72 |
+
training (bool): If True, set the model to training mode; otherwise, evaluation mode.
|
| 73 |
+
"""
|
| 74 |
+
model.train() if training else model.eval()
|
| 75 |
+
for param in model.parameters():
|
| 76 |
+
param.requires_grad = training
|
| 77 |
+
|
| 78 |
+
def forward(
|
| 79 |
+
self,
|
| 80 |
+
img: Optional[torch.Tensor] = None,
|
| 81 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 82 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 83 |
+
noise: float = 0,
|
| 84 |
+
**kwargs: Any
|
| 85 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 86 |
+
"""
|
| 87 |
+
Forward pass of the model.
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
img (Optional[torch.Tensor]): Input image tensor.
|
| 91 |
+
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
|
| 92 |
+
attention_mask (Optional[torch.Tensor]): Attention mask for the inputs.
|
| 93 |
+
noise (float): Amount of noise to add in image encoding.
|
| 94 |
+
**kwargs: Additional arguments.
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
Tuple containing:
|
| 98 |
+
- mse_loss (torch.Tensor): Mean squared error loss.
|
| 99 |
+
- pred_latent (torch.Tensor): Predicted latent representations.
|
| 100 |
+
- z (torch.Tensor): Sampled latent vector from VAE.
|
| 101 |
+
"""
|
| 102 |
+
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise)
|
| 103 |
+
|
| 104 |
+
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds)
|
| 105 |
+
vae_latent = self.t5_to_vae(output.logits[:, :-1])
|
| 106 |
+
pred_latent = self.z_rearrange(vae_latent)
|
| 107 |
+
|
| 108 |
+
mse_loss = self.mse_criterion(vae_latent, z_sequence)
|
| 109 |
+
return mse_loss, pred_latent, z
|
| 110 |
+
|
| 111 |
+
def generate(
|
| 112 |
+
self,
|
| 113 |
+
style_text: str,
|
| 114 |
+
gen_text: str,
|
| 115 |
+
style_img: torch.Tensor,
|
| 116 |
+
**kwargs: Any
|
| 117 |
+
) -> Image.Image:
|
| 118 |
+
"""
|
| 119 |
+
Generate an image by combining style and generation texts with a style image.
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
style_text (str): Style-related text prompt.
|
| 123 |
+
gen_text (str): Generation-related text prompt.
|
| 124 |
+
style_img (torch.Tensor): Style image tensor. Expected shape is either 3D or 4D.
|
| 125 |
+
**kwargs: Additional keyword arguments.
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
Image.Image: Generated image as a PIL image.
|
| 129 |
+
"""
|
| 130 |
+
if style_img.ndim == 3:
|
| 131 |
+
style_img = style_img.unsqueeze(0)
|
| 132 |
+
elif style_img.ndim == 4:
|
| 133 |
+
pass
|
| 134 |
+
else:
|
| 135 |
+
raise ValueError('style_img must be 3D or 4D')
|
| 136 |
+
|
| 137 |
+
texts = [style_text + ' ' + gen_text]
|
| 138 |
+
imgs, _, img_ends = self._generate(texts=texts, imgs=style_img, **kwargs)
|
| 139 |
+
imgs = (imgs + 1) / 2
|
| 140 |
+
return F.to_pil_image(imgs[0, ..., style_img.size(-1):img_ends.item()].detach().cpu())
|
| 141 |
+
|
| 142 |
+
def generate_batch(
|
| 143 |
+
self,
|
| 144 |
+
style_texts: List[str],
|
| 145 |
+
gen_texts: List[str],
|
| 146 |
+
style_imgs: torch.Tensor,
|
| 147 |
+
lengths: List[int],
|
| 148 |
+
**kwargs: Any
|
| 149 |
+
) -> List[Image.Image]:
|
| 150 |
+
"""
|
| 151 |
+
Generate a batch of images from lists of style texts, generation texts, and style images.
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
style_texts (List[str]): List of style-related text prompts.
|
| 155 |
+
gen_texts (List[str]): List of generation-related text prompts.
|
| 156 |
+
style_imgs (torch.Tensor): Batch of style images (4D tensor).
|
| 157 |
+
lengths (List[int]): List of lengths corresponding to each image.
|
| 158 |
+
**kwargs: Additional keyword arguments.
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
List[Image.Image]: List of generated images as PIL images.
|
| 162 |
+
"""
|
| 163 |
+
assert style_imgs.ndim == 4, 'style_imgs must be 4D'
|
| 164 |
+
assert len(style_texts) == len(style_imgs), 'style_texts and style_imgs must have the same length'
|
| 165 |
+
assert len(gen_texts) == len(style_imgs), 'gen_texts and style_imgs must have the same length'
|
| 166 |
+
texts = [style_text + ' ' + gen_text for style_text, gen_text in zip(style_texts, gen_texts)]
|
| 167 |
+
|
| 168 |
+
imgs, _, img_ends = self._generate(texts=texts, imgs=style_imgs, lengths=lengths, **kwargs)
|
| 169 |
+
imgs = (imgs + 1) / 2
|
| 170 |
+
|
| 171 |
+
out_imgs = []
|
| 172 |
+
for i, end in enumerate(img_ends):
|
| 173 |
+
start = lengths[i]
|
| 174 |
+
out_imgs.append(F.to_pil_image(imgs[i, ..., start:end].detach().cpu()))
|
| 175 |
+
return out_imgs
|
| 176 |
+
|
| 177 |
+
def _generate(
|
| 178 |
+
self,
|
| 179 |
+
texts: Optional[List[str]] = None,
|
| 180 |
+
imgs: Optional[torch.Tensor] = None,
|
| 181 |
+
lengths: Optional[List[int]] = None,
|
| 182 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 183 |
+
z_sequence: Optional[torch.Tensor] = None,
|
| 184 |
+
max_new_tokens: int = 256,
|
| 185 |
+
stopping_criteria: str = 'latent',
|
| 186 |
+
stopping_after: int = 10,
|
| 187 |
+
stopping_patience: int = 1
|
| 188 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 189 |
+
"""
|
| 190 |
+
Internal generation routine that combines textual and visual inputs to iteratively generate
|
| 191 |
+
latent representations and decode them into images.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
texts (Optional[List[str]]): List of text prompts.
|
| 195 |
+
imgs (Optional[torch.Tensor]): Input image tensor.
|
| 196 |
+
lengths (Optional[List[int]]): Desired lengths for each image in latent space.
|
| 197 |
+
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
|
| 198 |
+
z_sequence (Optional[torch.Tensor]): Precomputed latent sequence.
|
| 199 |
+
max_new_tokens (int): Maximum tokens to generate.
|
| 200 |
+
stopping_criteria (str): Criteria for stopping ('latent' or 'none').
|
| 201 |
+
stopping_after (int): Number of tokens to check for stopping condition.
|
| 202 |
+
stopping_patience (int): Patience parameter for stopping condition.
|
| 203 |
+
|
| 204 |
+
Returns:
|
| 205 |
+
Tuple containing:
|
| 206 |
+
- imgs (torch.Tensor): Generated images.
|
| 207 |
+
- canvas_sequence (torch.Tensor): Generated latent canvas sequence.
|
| 208 |
+
- img_ends (torch.Tensor): End indices for each generated image.
|
| 209 |
+
"""
|
| 210 |
+
assert texts is not None or input_ids is not None, 'Either texts or input_ids must be provided'
|
| 211 |
+
assert imgs is not None or z_sequence is not None, 'Either imgs or z_sequence must be provided'
|
| 212 |
+
|
| 213 |
+
if input_ids is None:
|
| 214 |
+
input_ids = self.tokenizer(texts, return_tensors='pt', padding=True).input_ids
|
| 215 |
+
input_ids = input_ids.to(self.device)
|
| 216 |
+
|
| 217 |
+
if z_sequence is None:
|
| 218 |
+
_, z_sequence, _ = self._img_encode(imgs)
|
| 219 |
+
|
| 220 |
+
if lengths is None:
|
| 221 |
+
lengths = [imgs.size(-1)] * imgs.size(0)
|
| 222 |
+
lengths = torch.tensor(lengths).to(self.device)
|
| 223 |
+
lengths = (lengths / 8).ceil().int()
|
| 224 |
+
|
| 225 |
+
z_sequence_mask = torch.zeros((z_sequence.size(0), lengths.max() + max_new_tokens))
|
| 226 |
+
z_sequence_mask = z_sequence_mask.bool().to(self.device)
|
| 227 |
+
for i, l in enumerate(lengths):
|
| 228 |
+
z_sequence_mask[i, :l] = True
|
| 229 |
+
|
| 230 |
+
canvas_sequence = z_sequence[:, :lengths.min()]
|
| 231 |
+
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0))
|
| 232 |
+
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0))
|
| 233 |
+
seq_stops = torch.ones(z_sequence.size(0), dtype=torch.int) * -1
|
| 234 |
+
|
| 235 |
+
for token_idx in range(lengths.min(), lengths.max() + max_new_tokens):
|
| 236 |
+
if len(z_sequence) == 0:
|
| 237 |
+
decoder_inputs_embeds = sos
|
| 238 |
+
else:
|
| 239 |
+
decoder_inputs_embeds = self.vae_to_t5(canvas_sequence)
|
| 240 |
+
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
| 241 |
+
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds)
|
| 242 |
+
vae_latent = self.t5_to_vae(output.logits[:, -1:])
|
| 243 |
+
|
| 244 |
+
mask_slice = z_sequence_mask[:, token_idx].unsqueeze(-1)
|
| 245 |
+
if token_idx < z_sequence.size(1):
|
| 246 |
+
seq_slice = torch.where(mask_slice, z_sequence[:, token_idx], vae_latent[:, 0])
|
| 247 |
+
else:
|
| 248 |
+
seq_slice = vae_latent[:, 0]
|
| 249 |
+
canvas_sequence = torch.cat([canvas_sequence, seq_slice.unsqueeze(1)], dim=1)
|
| 250 |
+
|
| 251 |
+
if stopping_criteria == 'latent':
|
| 252 |
+
similarity = torch.nn.functional.cosine_similarity(canvas_sequence, pad_token, dim=-1)
|
| 253 |
+
windows = (similarity > self.padding_token_threshold).unfold(1, stopping_after, 1)
|
| 254 |
+
window_sums = windows.to(torch.int).sum(dim=2)
|
| 255 |
+
|
| 256 |
+
for i in range(similarity.size(0)):
|
| 257 |
+
idx = (window_sums[i] > (stopping_after - stopping_patience)).nonzero(as_tuple=True)[0]
|
| 258 |
+
if idx.numel() > 0:
|
| 259 |
+
seq_stops[i] = idx[0].item()
|
| 260 |
+
|
| 261 |
+
if torch.all(seq_stops >= 0):
|
| 262 |
+
break
|
| 263 |
+
elif stopping_criteria == 'none':
|
| 264 |
+
pass
|
| 265 |
+
|
| 266 |
+
imgs = torch.clamp(self.vae.decode(self.z_rearrange(canvas_sequence)).sample, -1, 1)
|
| 267 |
+
return imgs, canvas_sequence, seq_stops * 8
|
| 268 |
+
|
| 269 |
+
def _img_encode(
|
| 270 |
+
self,
|
| 271 |
+
img: torch.Tensor,
|
| 272 |
+
noise: float = 0
|
| 273 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 274 |
+
"""
|
| 275 |
+
Encode the input image into a latent representation using the VAE.
|
| 276 |
+
|
| 277 |
+
Args:
|
| 278 |
+
img (torch.Tensor): Input image tensor.
|
| 279 |
+
noise (float): Standard deviation of noise to add to the latent sequence.
|
| 280 |
+
|
| 281 |
+
Returns:
|
| 282 |
+
Tuple containing:
|
| 283 |
+
- decoder_inputs_embeds (torch.Tensor): Embeddings to be used as T5 decoder inputs.
|
| 284 |
+
- z_sequence (torch.Tensor): Rearranged latent sequence from the VAE.
|
| 285 |
+
- z (torch.Tensor): Sampled latent vector from the VAE.
|
| 286 |
+
"""
|
| 287 |
+
posterior = self.vae.encode(img.float())
|
| 288 |
+
z = posterior.latent_dist.sample()
|
| 289 |
+
z_sequence = self.query_rearrange(z)
|
| 290 |
+
|
| 291 |
+
noise_sequence = z_sequence
|
| 292 |
+
if noise > 0:
|
| 293 |
+
noise_sequence = z_sequence + torch.randn_like(z_sequence) * noise
|
| 294 |
+
|
| 295 |
+
decoder_inputs_embeds = self.vae_to_t5(noise_sequence)
|
| 296 |
+
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=decoder_inputs_embeds.size(0))
|
| 297 |
+
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
| 298 |
+
return decoder_inputs_embeds, z_sequence, z
|
| 299 |
+
|
| 300 |
+
def compute_padding_token(self) -> None:
|
| 301 |
+
"""
|
| 302 |
+
Compute and update the padding token.
|
| 303 |
+
|
| 304 |
+
Raises:
|
| 305 |
+
NotImplementedError: This method must be implemented.
|
| 306 |
+
"""
|
| 307 |
+
raise NotImplementedError("compute_padding_token not implemented")
|
| 308 |
+
|
| 309 |
+
def compute_padding_token_threshold(self) -> None:
|
| 310 |
+
"""
|
| 311 |
+
Compute and update the padding token threshold.
|
| 312 |
+
|
| 313 |
+
Raises:
|
| 314 |
+
NotImplementedError: This method must be implemented.
|
| 315 |
+
"""
|
| 316 |
+
raise NotImplementedError("compute_padding_token_threshold not implemented")
|
modeling_emuru.py
CHANGED
|
@@ -1,46 +1,22 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer
|
| 4 |
from configuration_emuru import EmuruConfig
|
|
|
|
| 5 |
from diffusers import AutoencoderKL
|
| 6 |
from einops.layers.torch import Rearrange
|
| 7 |
-
from einops import repeat
|
| 8 |
-
from torchvision.transforms import functional as F
|
| 9 |
-
from typing import Optional, Tuple, List, Any
|
| 10 |
-
from PIL import Image
|
| 11 |
|
| 12 |
class Emuru(PreTrainedModel):
|
| 13 |
-
config_class = EmuruConfig
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
for image generation conditioned on text and style images.
|
| 17 |
-
|
| 18 |
-
Attributes:
|
| 19 |
-
config_class (Type): Configuration class for the model.
|
| 20 |
-
tokenizer (AutoTokenizer): Tokenizer loaded from the provided tokenizer configuration.
|
| 21 |
-
T5 (T5ForConditionalGeneration): T5 model adapted for conditional generation.
|
| 22 |
-
sos (nn.Embedding): Start-of-sequence embedding.
|
| 23 |
-
vae_to_t5 (nn.Linear): Linear projection from VAE latent space to T5 hidden space.
|
| 24 |
-
t5_to_vae (nn.Linear): Linear projection from T5 hidden space back to VAE latent space.
|
| 25 |
-
padding_token (nn.Parameter): Non-trainable parameter for padding tokens.
|
| 26 |
-
padding_token_threshold (nn.Parameter): Non-trainable parameter for padding token threshold.
|
| 27 |
-
vae (AutoencoderKL): Pre-trained Variational Autoencoder.
|
| 28 |
-
query_rearrange (Rearrange): Layer to rearrange VAE latent representations for queries.
|
| 29 |
-
z_rearrange (Rearrange): Layer to rearrange T5 outputs back to VAE latent dimensions.
|
| 30 |
-
mse_criterion (nn.MSELoss): Mean squared error loss function.
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
def __init__(self, config: EmuruConfig) -> None:
|
| 34 |
-
"""
|
| 35 |
-
Initialize the Emuru model.
|
| 36 |
-
|
| 37 |
-
Args:
|
| 38 |
-
config (EmuruConfig): Configuration object containing model hyperparameters and paths.
|
| 39 |
-
"""
|
| 40 |
super().__init__(config)
|
| 41 |
-
|
| 42 |
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_config)
|
| 43 |
|
|
|
|
| 44 |
t5_config = T5Config.from_pretrained(config.t5_config)
|
| 45 |
t5_config.vocab_size = len(self.tokenizer)
|
| 46 |
self.T5 = T5ForConditionalGeneration(t5_config)
|
|
@@ -54,51 +30,34 @@ class Emuru(PreTrainedModel):
|
|
| 54 |
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False)
|
| 55 |
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False)
|
| 56 |
|
|
|
|
| 57 |
self.vae = AutoencoderKL.from_pretrained(config.vae_config)
|
| 58 |
self.set_training(self.vae, False)
|
| 59 |
|
|
|
|
| 60 |
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query)
|
| 61 |
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query)
|
| 62 |
|
|
|
|
| 63 |
self.mse_criterion = nn.MSELoss()
|
|
|
|
|
|
|
| 64 |
self.init_weights()
|
| 65 |
|
| 66 |
-
def set_training(self, model: nn.Module, training: bool) -> None:
|
| 67 |
-
"""
|
| 68 |
-
Set the training mode for a given model and freeze/unfreeze parameters accordingly.
|
| 69 |
|
| 70 |
-
|
| 71 |
-
model (nn.Module): The model to set the training mode for.
|
| 72 |
-
training (bool): If True, set the model to training mode; otherwise, evaluation mode.
|
| 73 |
-
"""
|
| 74 |
model.train() if training else model.eval()
|
| 75 |
for param in model.parameters():
|
| 76 |
param.requires_grad = training
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
"""
|
| 87 |
-
Forward pass of the model.
|
| 88 |
-
|
| 89 |
-
Args:
|
| 90 |
-
img (Optional[torch.Tensor]): Input image tensor.
|
| 91 |
-
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
|
| 92 |
-
attention_mask (Optional[torch.Tensor]): Attention mask for the inputs.
|
| 93 |
-
noise (float): Amount of noise to add in image encoding.
|
| 94 |
-
**kwargs: Additional arguments.
|
| 95 |
-
|
| 96 |
-
Returns:
|
| 97 |
-
Tuple containing:
|
| 98 |
-
- mse_loss (torch.Tensor): Mean squared error loss.
|
| 99 |
-
- pred_latent (torch.Tensor): Predicted latent representations.
|
| 100 |
-
- z (torch.Tensor): Sampled latent vector from VAE.
|
| 101 |
-
"""
|
| 102 |
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise)
|
| 103 |
|
| 104 |
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds)
|
|
@@ -108,182 +67,99 @@ class Emuru(PreTrainedModel):
|
|
| 108 |
mse_loss = self.mse_criterion(vae_latent, z_sequence)
|
| 109 |
return mse_loss, pred_latent, z
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
Args:
|
| 122 |
-
style_text (str): Style-related text prompt.
|
| 123 |
-
gen_text (str): Generation-related text prompt.
|
| 124 |
-
style_img (torch.Tensor): Style image tensor. Expected shape is either 3D or 4D.
|
| 125 |
-
**kwargs: Additional keyword arguments.
|
| 126 |
-
|
| 127 |
-
Returns:
|
| 128 |
-
Image.Image: Generated image as a PIL image.
|
| 129 |
-
"""
|
| 130 |
-
if style_img.ndim == 3:
|
| 131 |
-
style_img = style_img.unsqueeze(0)
|
| 132 |
-
elif style_img.ndim == 4:
|
| 133 |
-
pass
|
| 134 |
-
else:
|
| 135 |
-
raise ValueError('style_img must be 3D or 4D')
|
| 136 |
-
|
| 137 |
-
texts = [style_text + ' ' + gen_text]
|
| 138 |
-
imgs, _, img_ends = self._generate(texts=texts, imgs=style_img, **kwargs)
|
| 139 |
-
imgs = (imgs + 1) / 2
|
| 140 |
-
return F.to_pil_image(imgs[0, ..., style_img.size(-1):img_ends.item()].detach().cpu())
|
| 141 |
-
|
| 142 |
-
def generate_batch(
|
| 143 |
-
self,
|
| 144 |
-
style_texts: List[str],
|
| 145 |
-
gen_texts: List[str],
|
| 146 |
-
style_imgs: torch.Tensor,
|
| 147 |
-
lengths: List[int],
|
| 148 |
-
**kwargs: Any
|
| 149 |
-
) -> List[Image.Image]:
|
| 150 |
-
"""
|
| 151 |
-
Generate a batch of images from lists of style texts, generation texts, and style images.
|
| 152 |
-
|
| 153 |
-
Args:
|
| 154 |
-
style_texts (List[str]): List of style-related text prompts.
|
| 155 |
-
gen_texts (List[str]): List of generation-related text prompts.
|
| 156 |
-
style_imgs (torch.Tensor): Batch of style images (4D tensor).
|
| 157 |
-
lengths (List[int]): List of lengths corresponding to each image.
|
| 158 |
-
**kwargs: Additional keyword arguments.
|
| 159 |
-
|
| 160 |
-
Returns:
|
| 161 |
-
List[Image.Image]: List of generated images as PIL images.
|
| 162 |
-
"""
|
| 163 |
-
assert style_imgs.ndim == 4, 'style_imgs must be 4D'
|
| 164 |
-
assert len(style_texts) == len(style_imgs), 'style_texts and style_imgs must have the same length'
|
| 165 |
-
assert len(gen_texts) == len(style_imgs), 'gen_texts and style_imgs must have the same length'
|
| 166 |
-
texts = [style_text + ' ' + gen_text for style_text, gen_text in zip(style_texts, gen_texts)]
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
assert
|
|
|
|
| 212 |
|
| 213 |
if input_ids is None:
|
| 214 |
-
input_ids = self.tokenizer(
|
| 215 |
input_ids = input_ids.to(self.device)
|
| 216 |
|
| 217 |
if z_sequence is None:
|
| 218 |
-
_, z_sequence, _ = self._img_encode(
|
| 219 |
-
|
| 220 |
-
if lengths is None:
|
| 221 |
-
lengths = [imgs.size(-1)] * imgs.size(0)
|
| 222 |
-
lengths = torch.tensor(lengths).to(self.device)
|
| 223 |
-
lengths = (lengths / 8).ceil().int()
|
| 224 |
-
|
| 225 |
-
z_sequence_mask = torch.zeros((z_sequence.size(0), lengths.max() + max_new_tokens))
|
| 226 |
-
z_sequence_mask = z_sequence_mask.bool().to(self.device)
|
| 227 |
-
for i, l in enumerate(lengths):
|
| 228 |
-
z_sequence_mask[i, :l] = True
|
| 229 |
|
| 230 |
-
canvas_sequence = z_sequence[:, :lengths.min()]
|
| 231 |
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0))
|
| 232 |
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0))
|
| 233 |
-
seq_stops = torch.ones(z_sequence.size(0), dtype=torch.int) * -1
|
| 234 |
|
| 235 |
-
for
|
| 236 |
if len(z_sequence) == 0:
|
| 237 |
decoder_inputs_embeds = sos
|
| 238 |
else:
|
| 239 |
-
decoder_inputs_embeds = self.vae_to_t5(
|
| 240 |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
| 241 |
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds)
|
| 242 |
vae_latent = self.t5_to_vae(output.logits[:, -1:])
|
| 243 |
-
|
| 244 |
-
mask_slice = z_sequence_mask[:, token_idx].unsqueeze(-1)
|
| 245 |
-
if token_idx < z_sequence.size(1):
|
| 246 |
-
seq_slice = torch.where(mask_slice, z_sequence[:, token_idx], vae_latent[:, 0])
|
| 247 |
-
else:
|
| 248 |
-
seq_slice = vae_latent[:, 0]
|
| 249 |
-
canvas_sequence = torch.cat([canvas_sequence, seq_slice.unsqueeze(1)], dim=1)
|
| 250 |
|
| 251 |
if stopping_criteria == 'latent':
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
idx = (window_sums[i] > (stopping_after - stopping_patience)).nonzero(as_tuple=True)[0]
|
| 258 |
-
if idx.numel() > 0:
|
| 259 |
-
seq_stops[i] = idx[0].item()
|
| 260 |
-
|
| 261 |
-
if torch.all(seq_stops >= 0):
|
| 262 |
break
|
| 263 |
-
elif stopping_criteria == '
|
| 264 |
-
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
|
|
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
img: torch.Tensor,
|
| 272 |
-
noise: float = 0
|
| 273 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 274 |
-
"""
|
| 275 |
-
Encode the input image into a latent representation using the VAE.
|
| 276 |
-
|
| 277 |
-
Args:
|
| 278 |
-
img (torch.Tensor): Input image tensor.
|
| 279 |
-
noise (float): Standard deviation of noise to add to the latent sequence.
|
| 280 |
-
|
| 281 |
-
Returns:
|
| 282 |
-
Tuple containing:
|
| 283 |
-
- decoder_inputs_embeds (torch.Tensor): Embeddings to be used as T5 decoder inputs.
|
| 284 |
-
- z_sequence (torch.Tensor): Rearranged latent sequence from the VAE.
|
| 285 |
-
- z (torch.Tensor): Sampled latent vector from the VAE.
|
| 286 |
-
"""
|
| 287 |
posterior = self.vae.encode(img.float())
|
| 288 |
z = posterior.latent_dist.sample()
|
| 289 |
z_sequence = self.query_rearrange(z)
|
|
@@ -297,20 +173,10 @@ class Emuru(PreTrainedModel):
|
|
| 297 |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
| 298 |
return decoder_inputs_embeds, z_sequence, z
|
| 299 |
|
| 300 |
-
def compute_padding_token(self) -> None:
|
| 301 |
-
"""
|
| 302 |
-
Compute and update the padding token.
|
| 303 |
|
| 304 |
-
|
| 305 |
-
NotImplementedError: This method must be implemented.
|
| 306 |
-
"""
|
| 307 |
raise NotImplementedError("compute_padding_token not implemented")
|
| 308 |
|
| 309 |
-
def compute_padding_token_threshold(self) -> None:
|
| 310 |
-
"""
|
| 311 |
-
Compute and update the padding token threshold.
|
| 312 |
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
"""
|
| 316 |
-
raise NotImplementedError("compute_padding_token_threshold not implemented")
|
|
|
|
| 1 |
+
# modeling_emuru.py
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer
|
| 5 |
from configuration_emuru import EmuruConfig
|
| 6 |
+
# from .configuration_emuru import EmuruConfig
|
| 7 |
from diffusers import AutoencoderKL
|
| 8 |
from einops.layers.torch import Rearrange
|
| 9 |
+
from einops import rearrange, repeat
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
class Emuru(PreTrainedModel):
|
| 12 |
+
config_class = EmuruConfig # Link to your configuration
|
| 13 |
+
|
| 14 |
+
def __init__(self, config):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
super().__init__(config)
|
| 16 |
+
# Initialize the tokenizer (if you want it as part of your model)
|
| 17 |
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_config)
|
| 18 |
|
| 19 |
+
# Load T5 using the provided filename from config
|
| 20 |
t5_config = T5Config.from_pretrained(config.t5_config)
|
| 21 |
t5_config.vocab_size = len(self.tokenizer)
|
| 22 |
self.T5 = T5ForConditionalGeneration(t5_config)
|
|
|
|
| 30 |
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False)
|
| 31 |
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False)
|
| 32 |
|
| 33 |
+
# Load VAE
|
| 34 |
self.vae = AutoencoderKL.from_pretrained(config.vae_config)
|
| 35 |
self.set_training(self.vae, False)
|
| 36 |
|
| 37 |
+
# Define the rearrange layers
|
| 38 |
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query)
|
| 39 |
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query)
|
| 40 |
|
| 41 |
+
# Define your loss functions
|
| 42 |
self.mse_criterion = nn.MSELoss()
|
| 43 |
+
|
| 44 |
+
# Initialize weights following Hugging Face conventions (if needed)
|
| 45 |
self.init_weights()
|
| 46 |
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
def set_training(self, model, training):
|
|
|
|
|
|
|
|
|
|
| 49 |
model.train() if training else model.eval()
|
| 50 |
for param in model.parameters():
|
| 51 |
param.requires_grad = training
|
| 52 |
|
| 53 |
+
# --- Implement the rest of your methods ---
|
| 54 |
+
# For example, _img_encode, forward, generate, etc.
|
| 55 |
+
# You can largely port your existing code here, making sure that:
|
| 56 |
+
# - The forward method returns a dictionary with your losses and outputs.
|
| 57 |
+
# - You use the Hugging Face methods for saving/loading weights.
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def forward(self, img=None, input_ids=None, attention_mask=None, noise=0, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise)
|
| 62 |
|
| 63 |
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds)
|
|
|
|
| 67 |
mse_loss = self.mse_criterion(vae_latent, z_sequence)
|
| 68 |
return mse_loss, pred_latent, z
|
| 69 |
|
| 70 |
+
|
| 71 |
+
def old_generate(self, text=None, img=None, z_sequence=None, input_ids=None, max_new_tokens=256,
|
| 72 |
+
stopping_criteria='latent', stopping_after=10, stopping_errors=1):
|
| 73 |
+
assert text is not None or input_ids is not None, 'Either text or input_ids must be provided'
|
| 74 |
+
assert img is not None or z_sequence is not None, 'Either img or z_sequence must be provided'
|
| 75 |
+
|
| 76 |
+
if input_ids is None:
|
| 77 |
+
input_ids = self.tokenizer(text, return_tensors='pt', padding=True).input_ids
|
| 78 |
+
input_ids = input_ids.to(next(self.T5.parameters()).device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
if z_sequence is None:
|
| 81 |
+
_, z_sequence, _ = self._img_encode(img)
|
| 82 |
+
z_sequence = [z_sequence]
|
| 83 |
+
|
| 84 |
+
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0))
|
| 85 |
+
for _ in range(max_new_tokens):
|
| 86 |
+
if len(z_sequence) == 0:
|
| 87 |
+
decoder_inputs_embeds = sos
|
| 88 |
+
else:
|
| 89 |
+
decoder_inputs_embeds = self.vae_to_t5(torch.cat(z_sequence, dim=1))
|
| 90 |
+
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
| 91 |
+
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds)
|
| 92 |
+
vae_latent = self.t5_to_vae(output.logits[:, -1:])
|
| 93 |
+
z_sequence.append(vae_latent)
|
| 94 |
+
|
| 95 |
+
if stopping_criteria == 'latent':
|
| 96 |
+
curr_z_sequence = torch.cat(z_sequence, dim=1)
|
| 97 |
+
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0)).to(decoder_inputs_embeds.device)
|
| 98 |
+
similarity = torch.nn.functional.cosine_similarity(curr_z_sequence, pad_token, dim=-1)
|
| 99 |
+
similarity = similarity[:, -stopping_after:] > self.padding_token_threshold
|
| 100 |
+
if torch.all(similarity.sum(-1) >= (stopping_after - stopping_errors)):
|
| 101 |
+
# z_sequence = [curr_z_sequence[:, :-stopping_after]]
|
| 102 |
+
z_sequence = [curr_z_sequence]
|
| 103 |
+
break
|
| 104 |
+
elif stopping_criteria == 'pixel':
|
| 105 |
+
raise NotImplementedError
|
| 106 |
+
|
| 107 |
+
z_sequence = torch.cat(z_sequence, dim=1)
|
| 108 |
+
img = torch.clamp(self.vae.decode(self.z_rearrange(z_sequence)).sample, -1, 1)
|
| 109 |
+
return img
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def generate(self,
|
| 113 |
+
style_text=None,
|
| 114 |
+
gen_text=None,
|
| 115 |
+
style_img=None,
|
| 116 |
+
input_ids=None,
|
| 117 |
+
z_sequence=None,
|
| 118 |
+
max_new_tokens=256,
|
| 119 |
+
stopping_criteria='latent',
|
| 120 |
+
stopping_after=10,
|
| 121 |
+
stopping_patience=1,
|
| 122 |
+
trim_image=True):
|
| 123 |
+
assert (gen_text is not None and style_text is not None) or input_ids is not None, 'Either gen_text and style_text or input_ids must be provided'
|
| 124 |
+
assert style_img is not None or z_sequence is not None, 'Either style_img or z_sequence must be provided'
|
| 125 |
|
| 126 |
if input_ids is None:
|
| 127 |
+
input_ids = self.tokenizer(gen_text + ' ' + style_text, return_tensors='pt', padding=True).input_ids
|
| 128 |
input_ids = input_ids.to(self.device)
|
| 129 |
|
| 130 |
if z_sequence is None:
|
| 131 |
+
_, z_sequence, _ = self._img_encode(style_img)
|
| 132 |
+
z_sequence = [z_sequence]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
|
|
|
| 134 |
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0))
|
| 135 |
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0))
|
|
|
|
| 136 |
|
| 137 |
+
for _ in range(max_new_tokens):
|
| 138 |
if len(z_sequence) == 0:
|
| 139 |
decoder_inputs_embeds = sos
|
| 140 |
else:
|
| 141 |
+
decoder_inputs_embeds = self.vae_to_t5(torch.cat(z_sequence, dim=1))
|
| 142 |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
| 143 |
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds)
|
| 144 |
vae_latent = self.t5_to_vae(output.logits[:, -1:])
|
| 145 |
+
z_sequence.append(vae_latent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
if stopping_criteria == 'latent':
|
| 148 |
+
curr_z_sequence = torch.cat(z_sequence, dim=1)
|
| 149 |
+
similarity = torch.nn.functional.cosine_similarity(curr_z_sequence, pad_token, dim=-1)
|
| 150 |
+
similarity = similarity[:, -stopping_after:] > self.padding_token_threshold
|
| 151 |
+
if torch.all(similarity.sum(-1) >= (stopping_after - stopping_patience)):
|
| 152 |
+
z_sequence = [curr_z_sequence[:, :-similarity.sum(-1)]] if trim_image else [curr_z_sequence]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
break
|
| 154 |
+
elif stopping_criteria == 'pixel':
|
| 155 |
+
raise NotImplementedError
|
| 156 |
|
| 157 |
+
z_sequence = torch.cat(z_sequence, dim=1)
|
| 158 |
+
img = torch.clamp(self.vae.decode(self.z_rearrange(z_sequence)).sample, -1, 1)
|
| 159 |
+
return img, z_sequence
|
| 160 |
|
| 161 |
+
|
| 162 |
+
def _img_encode(self, img, noise=0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
posterior = self.vae.encode(img.float())
|
| 164 |
z = posterior.latent_dist.sample()
|
| 165 |
z_sequence = self.query_rearrange(z)
|
|
|
|
| 173 |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
| 174 |
return decoder_inputs_embeds, z_sequence, z
|
| 175 |
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
+
def compute_padding_token(self):
|
|
|
|
|
|
|
| 178 |
raise NotImplementedError("compute_padding_token not implemented")
|
| 179 |
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
def compute_padding_token_threshold(self):
|
| 182 |
+
raise NotImplementedError("compute_padding_token_threshold not implemented")
|
|
|
|
|
|