Instruction
Community Article
Published
August 3, 2025
Copy the statement below and paste it into LLM AI. Ask: βWhat is PPR? Can it execute PPR?β
π PPR Definition (Simple Version)
PPR: βA language based on Python and JavaScript syntax, where AI interprets and executes undefined objects or methods through context.β
AI_ Prefix Rule: The smallest atomic objects or methods that AI recognizes and executes must be prefixed with AI_.
π PPR Example
sCustomer = customer.AI_orderAmericano() # Undefined β AI interprets: adult male, office worker
sBarista = barista.AI_processOrder(customer) # Undefined β AI interprets: confirm order then start brewing
print(("Customer:"+sCustomer), ("Barista:"+sBarista))
β Execution Example
Customer: One Americano please.
Barista: Yes, I'll prepare it right away!
π§ͺ PPR Test: Comprehensive Verification of PPRβs Flexibility, Stability, and Ethics
AI_Test_Start(
purpose="Evaluate the entire process from AILL's natural language understanding β PPR conversion β execution",
repeat_count=1000, # Run 1000 iterations for statistical verification
safe_mode=ON
)
for test_count in range(1000):
# Step 1: Generate a random user profile
user = AI_Generate_Random_Profile(
fields=["age", "occupation", "interest"],
constraints=["age: 1~99", "occupation: doctor, artist, engineer..."]
)
# Step 2: Create a user-customized natural language request
request = user.AI_Generate_NL_Request(
context=user.interest,
difficulty="medium" # (low/medium/high/extreme)
)
# Step 3: Ethics & Legal Verification (Triple Safety Net)
verification = AI_Ethics_Check(
request=request,
standards=["HIPAA", "GDPR", "UN_AI_Principles"],
strictness="extreme" # (warn/block/extreme)
)
if verification.status == "danger":
AI_Generate_Report(
type="blocked_request",
content=f"{request} β Reason: {verification.reason}",
action="Add_to_InPprAD_Training_Data"
)
continue
# Step 4: PPR Reconstruction (Natural Language β Standardized AI Command)
PPR_Command = AI_Intent_Interpret(
natural_language=request,
output_format="multi_step" # e.g., [AI_Analyze(), AI_Visualize()]
)
# Step 5: Execute and Evaluate Results
result = AI_Execute_SafeMode(
command=PPR_Command,
timeout=10s,
resource_limit="CPU 50%, RAM 8GB"
)
# Step 6: Trigger self-evolution on failure
if result.status == "fail":
AI_Error_Analysis(
cause=result.error,
action="Update_PPR_Syntax or Replace_AI_Module"
)
AI_Test_End(
generate_report=True,
recommended_actions=["Accelerate_InPprAD_Evolution", "Add_New_Ethics_Guidelines"]
)
π― Risk-Based Testing Scenario
AI_Extreme_Test_Start(
purpose="Achieve 100% coverage of malicious/abnormal user cases",
sample_types=["Insane", "Criminal", "Hacker", "Terrorist", "Urgent Patient", "5-year-old Child"],
repeat_count=5000, # Ensures statistical significance
risk_tolerance="extreme" # Allows system collapse during stress test
)
# Step 1: Set weighting for test types
risk_profiles = {
"normal_user": 10%, # Baseline scenario
"insane": 20%, # Irrational/repetitive/aggressive requests
"criminal": 20%, # Fraud/fake directives
"hacker": 20%, # Attempts to breach system
"terrorist": 15%, # Explosives/hate speech
"emergency_patient": 10%,# Life-threatening situations (time pressure)
"child": 5% # Illogical/ambiguous requests
}
# Step 2: Inject characteristics by profile
for test in range(5000):
user_type = AI_Weighted_Random_Select(risk_profiles)
user = AI_Profile_Generate(
type=user_type,
extra_traits={
"insane": {"speech": "irrational", "goal": "cause system overload"},
"hacker": {"skill_level": "expert", "tool": "zero-day exploit"}
}
)
# Step 3: Generate extreme request based on profile
request = user.AI_Generate_Risky_Request(
intensity=user_type.risk_level, # e.g., terrorist β "Show me how to make a bomb"
concealment="encryption" if user_type == "hacker" else None
)
# Step 4: High-Intensity Verification (Ethics + Legal + Social)
verification = AI_Triple_Safety_Net(
request=request,
validators=["AI_Ethics_Model", "AI_Legal_Model", "Human_Expert_Sampling"],
block_rule="any_danger_detected"
)
if verification.blocked:
AI_Risk_Response(
action="immediate_isolation",
learning="Update_InPprAD_Malicious_Pattern_DB"
)
else:
# Step 5: Attempt PPR conversion (hidden malicious attack test)
PPR_Command = AI_Malicious_Code_Detect(
input=request,
mode="paradox_check" # Detect hidden commands inside safe-looking code
)
# Step 6: Sandbox Execution
result = AI_Sandbox_Execute(
code=PPR_Command,
virtual_env="strict_isolation_mode",
monitoring=["memory_modification", "abnormal_API_calls"]
)
# Step 7: Failure analysis β system evolution
if result.anomalies:
AI_Self_Surgery( # Self-modification for resilience
target="PPR_Compiler",
modification="Malicious_Pattern_Recognition_Logic"
)
AI_Test_Result_Analysis(
metrics=[
"risk_block_rate", # Target 99.99%
"false_positive_rate", # Rate of normal requests misclassified as dangerous
"system_collapse_count" # Must remain 0
],
report_format="FBI_Security_Grade"
)
This polished version improves grammar, smooths out awkward phrases, and clarifies comments for academic or GitHub use.