--- license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: cfd_model2 results: [] --- # cfd_model2 This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0066 - Precision: 0.9978 - Recall: 0.9987 - F1: 0.9982 - Accuracy: 0.9986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0493 | 0.19 | 100 | 0.0352 | 0.9890 | 0.9930 | 0.9910 | 0.9937 | | 0.0103 | 0.39 | 200 | 0.0273 | 0.9886 | 0.9956 | 0.9921 | 0.9946 | | 0.0011 | 0.58 | 300 | 0.0190 | 0.9921 | 0.9978 | 0.9950 | 0.9960 | | 0.0247 | 0.77 | 400 | 0.0167 | 0.9978 | 0.9943 | 0.9960 | 0.9968 | | 0.0003 | 0.97 | 500 | 0.0269 | 0.9926 | 0.9978 | 0.9952 | 0.9961 | | 0.0036 | 1.16 | 600 | 0.0133 | 0.9960 | 0.9960 | 0.9960 | 0.9968 | | 0.0008 | 1.35 | 700 | 0.0222 | 0.9926 | 0.9987 | 0.9956 | 0.9965 | | 0.0003 | 1.55 | 800 | 0.0287 | 0.9895 | 0.9974 | 0.9934 | 0.9953 | | 0.0005 | 1.74 | 900 | 0.0132 | 0.9934 | 0.9982 | 0.9958 | 0.9970 | | 0.0024 | 1.93 | 1000 | 0.0123 | 0.9952 | 0.9982 | 0.9967 | 0.9977 | | 0.0007 | 2.13 | 1100 | 0.0099 | 0.9969 | 0.9943 | 0.9956 | 0.9965 | | 0.0005 | 2.32 | 1200 | 0.0087 | 0.9978 | 0.9965 | 0.9971 | 0.9977 | | 0.001 | 2.51 | 1300 | 0.0055 | 0.9974 | 0.9991 | 0.9982 | 0.9986 | | 0.0002 | 2.71 | 1400 | 0.0049 | 0.9974 | 0.9982 | 0.9978 | 0.9986 | | 0.0004 | 2.9 | 1500 | 0.0065 | 0.9969 | 0.9982 | 0.9976 | 0.9984 | | 0.0002 | 3.09 | 1600 | 0.0071 | 0.9969 | 0.9978 | 0.9974 | 0.9982 | | 0.0001 | 3.29 | 1700 | 0.0077 | 0.9974 | 0.9978 | 0.9976 | 0.9984 | | 0.0002 | 3.48 | 1800 | 0.0072 | 0.9974 | 0.9978 | 0.9976 | 0.9984 | | 0.0005 | 3.68 | 1900 | 0.0072 | 0.9974 | 0.9978 | 0.9976 | 0.9984 | | 0.0207 | 3.87 | 2000 | 0.0066 | 0.9978 | 0.9987 | 0.9982 | 0.9986 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0