hassonofer commited on
Commit
c0ffd96
·
verified ·
1 Parent(s): e38bc73

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -34,18 +34,18 @@ Note: A 256 x 256 variant of this model is available as `rdnet_s_arabian-peninsu
34
  import birder
35
  from birder.inference.classification import infer_image
36
 
37
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
38
  # Note: A 256x256 variant is available as "rdnet_s_arabian-peninsula256px"
39
 
40
  # Get the image size the model was trained on
41
- size = birder.get_size_from_signature(signature)
42
 
43
  # Create an inference transform
44
- transform = birder.classification_transform(size, rgb_stats)
45
 
46
  image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
47
  (out, _) = infer_image(net, image, transform)
48
- # out is a NumPy array with shape of (1, num_classes), representing class probabilities.
49
  ```
50
 
51
  ### Image Embeddings
@@ -54,17 +54,17 @@ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
54
  import birder
55
  from birder.inference.classification import infer_image
56
 
57
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
58
 
59
  # Get the image size the model was trained on
60
- size = birder.get_size_from_signature(signature)
61
 
62
  # Create an inference transform
63
- transform = birder.classification_transform(size, rgb_stats)
64
 
65
  image = "path/to/image.jpeg" # or a PIL image
66
  (out, embedding) = infer_image(net, image, transform, return_embedding=True)
67
- # embedding is a NumPy array with shape of (1, embedding_size)
68
  ```
69
 
70
  ### Detection Feature Map
@@ -73,23 +73,23 @@ image = "path/to/image.jpeg" # or a PIL image
73
  from PIL import Image
74
  import birder
75
 
76
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
77
 
78
  # Get the image size the model was trained on
79
- size = birder.get_size_from_signature(signature)
80
 
81
  # Create an inference transform
82
- transform = birder.classification_transform(size, rgb_stats)
83
 
84
  image = Image.open("path/to/image.jpeg")
85
  features = net.detection_features(transform(image).unsqueeze(0))
86
  # features is a dict (stage name -> torch.Tensor)
87
  print([(k, v.size()) for k, v in features.items()])
88
  # Output example:
89
- # [('stage1', torch.Size([1, 96, 96, 96])),
90
- # ('stage2', torch.Size([1, 192, 48, 48])),
91
- # ('stage3', torch.Size([1, 384, 24, 24])),
92
- # ('stage4', torch.Size([1, 768, 12, 12]))]
93
  ```
94
 
95
  ## Citation
 
34
  import birder
35
  from birder.inference.classification import infer_image
36
 
37
+ (net, model_info) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
38
  # Note: A 256x256 variant is available as "rdnet_s_arabian-peninsula256px"
39
 
40
  # Get the image size the model was trained on
41
+ size = birder.get_size_from_signature(model_info.signature)
42
 
43
  # Create an inference transform
44
+ transform = birder.classification_transform(size, model_info.rgb_stats)
45
 
46
  image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
47
  (out, _) = infer_image(net, image, transform)
48
+ # out is a NumPy array with shape of (1, 735), representing class probabilities.
49
  ```
50
 
51
  ### Image Embeddings
 
54
  import birder
55
  from birder.inference.classification import infer_image
56
 
57
+ (net, model_info) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
58
 
59
  # Get the image size the model was trained on
60
+ size = birder.get_size_from_signature(model_info.signature)
61
 
62
  # Create an inference transform
63
+ transform = birder.classification_transform(size, model_info.rgb_stats)
64
 
65
  image = "path/to/image.jpeg" # or a PIL image
66
  (out, embedding) = infer_image(net, image, transform, return_embedding=True)
67
+ # embedding is a NumPy array with shape of (1, 1264)
68
  ```
69
 
70
  ### Detection Feature Map
 
73
  from PIL import Image
74
  import birder
75
 
76
+ (net, model_info) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
77
 
78
  # Get the image size the model was trained on
79
+ size = birder.get_size_from_signature(model_info.signature)
80
 
81
  # Create an inference transform
82
+ transform = birder.classification_transform(size, model_info.rgb_stats)
83
 
84
  image = Image.open("path/to/image.jpeg")
85
  features = net.detection_features(transform(image).unsqueeze(0))
86
  # features is a dict (stage name -> torch.Tensor)
87
  print([(k, v.size()) for k, v in features.items()])
88
  # Output example:
89
+ # [('stage1', torch.Size([1, 264, 96, 96])),
90
+ # ('stage2', torch.Size([1, 512, 48, 48])),
91
+ # ('stage3', torch.Size([1, 760, 24, 24])),
92
+ # ('stage4', torch.Size([1, 1264, 12, 12]))]
93
  ```
94
 
95
  ## Citation