Update README.md
Browse files
README.md
CHANGED
@@ -34,18 +34,18 @@ Note: A 256 x 256 variant of this model is available as `rdnet_s_arabian-peninsu
|
|
34 |
import birder
|
35 |
from birder.inference.classification import infer_image
|
36 |
|
37 |
-
(net,
|
38 |
# Note: A 256x256 variant is available as "rdnet_s_arabian-peninsula256px"
|
39 |
|
40 |
# Get the image size the model was trained on
|
41 |
-
size = birder.get_size_from_signature(signature)
|
42 |
|
43 |
# Create an inference transform
|
44 |
-
transform = birder.classification_transform(size, rgb_stats)
|
45 |
|
46 |
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
47 |
(out, _) = infer_image(net, image, transform)
|
48 |
-
# out is a NumPy array with shape of (1,
|
49 |
```
|
50 |
|
51 |
### Image Embeddings
|
@@ -54,17 +54,17 @@ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
|
54 |
import birder
|
55 |
from birder.inference.classification import infer_image
|
56 |
|
57 |
-
(net,
|
58 |
|
59 |
# Get the image size the model was trained on
|
60 |
-
size = birder.get_size_from_signature(signature)
|
61 |
|
62 |
# Create an inference transform
|
63 |
-
transform = birder.classification_transform(size, rgb_stats)
|
64 |
|
65 |
image = "path/to/image.jpeg" # or a PIL image
|
66 |
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
67 |
-
# embedding is a NumPy array with shape of (1,
|
68 |
```
|
69 |
|
70 |
### Detection Feature Map
|
@@ -73,23 +73,23 @@ image = "path/to/image.jpeg" # or a PIL image
|
|
73 |
from PIL import Image
|
74 |
import birder
|
75 |
|
76 |
-
(net,
|
77 |
|
78 |
# Get the image size the model was trained on
|
79 |
-
size = birder.get_size_from_signature(signature)
|
80 |
|
81 |
# Create an inference transform
|
82 |
-
transform = birder.classification_transform(size, rgb_stats)
|
83 |
|
84 |
image = Image.open("path/to/image.jpeg")
|
85 |
features = net.detection_features(transform(image).unsqueeze(0))
|
86 |
# features is a dict (stage name -> torch.Tensor)
|
87 |
print([(k, v.size()) for k, v in features.items()])
|
88 |
# Output example:
|
89 |
-
# [('stage1', torch.Size([1,
|
90 |
-
# ('stage2', torch.Size([1,
|
91 |
-
# ('stage3', torch.Size([1,
|
92 |
-
# ('stage4', torch.Size([1,
|
93 |
```
|
94 |
|
95 |
## Citation
|
|
|
34 |
import birder
|
35 |
from birder.inference.classification import infer_image
|
36 |
|
37 |
+
(net, model_info) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
|
38 |
# Note: A 256x256 variant is available as "rdnet_s_arabian-peninsula256px"
|
39 |
|
40 |
# Get the image size the model was trained on
|
41 |
+
size = birder.get_size_from_signature(model_info.signature)
|
42 |
|
43 |
# Create an inference transform
|
44 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
45 |
|
46 |
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
47 |
(out, _) = infer_image(net, image, transform)
|
48 |
+
# out is a NumPy array with shape of (1, 735), representing class probabilities.
|
49 |
```
|
50 |
|
51 |
### Image Embeddings
|
|
|
54 |
import birder
|
55 |
from birder.inference.classification import infer_image
|
56 |
|
57 |
+
(net, model_info) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
|
58 |
|
59 |
# Get the image size the model was trained on
|
60 |
+
size = birder.get_size_from_signature(model_info.signature)
|
61 |
|
62 |
# Create an inference transform
|
63 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
64 |
|
65 |
image = "path/to/image.jpeg" # or a PIL image
|
66 |
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
67 |
+
# embedding is a NumPy array with shape of (1, 1264)
|
68 |
```
|
69 |
|
70 |
### Detection Feature Map
|
|
|
73 |
from PIL import Image
|
74 |
import birder
|
75 |
|
76 |
+
(net, model_info) = birder.load_pretrained_model("rdnet_s_arabian-peninsula", inference=True)
|
77 |
|
78 |
# Get the image size the model was trained on
|
79 |
+
size = birder.get_size_from_signature(model_info.signature)
|
80 |
|
81 |
# Create an inference transform
|
82 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
83 |
|
84 |
image = Image.open("path/to/image.jpeg")
|
85 |
features = net.detection_features(transform(image).unsqueeze(0))
|
86 |
# features is a dict (stage name -> torch.Tensor)
|
87 |
print([(k, v.size()) for k, v in features.items()])
|
88 |
# Output example:
|
89 |
+
# [('stage1', torch.Size([1, 264, 96, 96])),
|
90 |
+
# ('stage2', torch.Size([1, 512, 48, 48])),
|
91 |
+
# ('stage3', torch.Size([1, 760, 24, 24])),
|
92 |
+
# ('stage4', torch.Size([1, 1264, 12, 12]))]
|
93 |
```
|
94 |
|
95 |
## Citation
|