Update README.md
Browse files
README.md
CHANGED
@@ -34,17 +34,17 @@ The species list is derived from the Collins bird guide [^1].
|
|
34 |
import birder
|
35 |
from birder.inference.classification import infer_image
|
36 |
|
37 |
-
(net,
|
38 |
|
39 |
# Get the image size the model was trained on
|
40 |
-
size = birder.get_size_from_signature(signature)
|
41 |
|
42 |
# Create an inference transform
|
43 |
-
transform = birder.classification_transform(size, rgb_stats)
|
44 |
|
45 |
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
46 |
(out, _) = infer_image(net, image, transform)
|
47 |
-
# out is a NumPy array with shape of (1,
|
48 |
```
|
49 |
|
50 |
### Image Embeddings
|
@@ -53,17 +53,17 @@ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
|
53 |
import birder
|
54 |
from birder.inference.classification import infer_image
|
55 |
|
56 |
-
(net,
|
57 |
|
58 |
# Get the image size the model was trained on
|
59 |
-
size = birder.get_size_from_signature(signature)
|
60 |
|
61 |
# Create an inference transform
|
62 |
-
transform = birder.classification_transform(size, rgb_stats)
|
63 |
|
64 |
image = "path/to/image.jpeg" # or a PIL image
|
65 |
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
66 |
-
# embedding is a NumPy array with shape of (1,
|
67 |
```
|
68 |
|
69 |
### Detection Feature Map
|
@@ -72,23 +72,23 @@ image = "path/to/image.jpeg" # or a PIL image
|
|
72 |
from PIL import Image
|
73 |
import birder
|
74 |
|
75 |
-
(net,
|
76 |
|
77 |
# Get the image size the model was trained on
|
78 |
-
size = birder.get_size_from_signature(signature)
|
79 |
|
80 |
# Create an inference transform
|
81 |
-
transform = birder.classification_transform(size, rgb_stats)
|
82 |
|
83 |
image = Image.open("path/to/image.jpeg")
|
84 |
features = net.detection_features(transform(image).unsqueeze(0))
|
85 |
# features is a dict (stage name -> torch.Tensor)
|
86 |
print([(k, v.size()) for k, v in features.items()])
|
87 |
# Output example:
|
88 |
-
# [('stage1', torch.Size([1,
|
89 |
-
# ('stage2', torch.Size([1,
|
90 |
-
# ('stage3', torch.Size([1,
|
91 |
-
# ('stage4', torch.Size([1,
|
92 |
```
|
93 |
|
94 |
## Citation
|
|
|
34 |
import birder
|
35 |
from birder.inference.classification import infer_image
|
36 |
|
37 |
+
(net, model_info) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
|
38 |
|
39 |
# Get the image size the model was trained on
|
40 |
+
size = birder.get_size_from_signature(model_info.signature)
|
41 |
|
42 |
# Create an inference transform
|
43 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
44 |
|
45 |
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
46 |
(out, _) = infer_image(net, image, transform)
|
47 |
+
# out is a NumPy array with shape of (1, 707), representing class probabilities.
|
48 |
```
|
49 |
|
50 |
### Image Embeddings
|
|
|
53 |
import birder
|
54 |
from birder.inference.classification import infer_image
|
55 |
|
56 |
+
(net, model_info) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
|
57 |
|
58 |
# Get the image size the model was trained on
|
59 |
+
size = birder.get_size_from_signature(model_info.signature)
|
60 |
|
61 |
# Create an inference transform
|
62 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
63 |
|
64 |
image = "path/to/image.jpeg" # or a PIL image
|
65 |
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
66 |
+
# embedding is a NumPy array with shape of (1, 1280)
|
67 |
```
|
68 |
|
69 |
### Detection Feature Map
|
|
|
72 |
from PIL import Image
|
73 |
import birder
|
74 |
|
75 |
+
(net, model_info) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
|
76 |
|
77 |
# Get the image size the model was trained on
|
78 |
+
size = birder.get_size_from_signature(model_info.signature)
|
79 |
|
80 |
# Create an inference transform
|
81 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
82 |
|
83 |
image = Image.open("path/to/image.jpeg")
|
84 |
features = net.detection_features(transform(image).unsqueeze(0))
|
85 |
# features is a dict (stage name -> torch.Tensor)
|
86 |
print([(k, v.size()) for k, v in features.items()])
|
87 |
# Output example:
|
88 |
+
# [('stage1', torch.Size([1, 48, 96, 96])),
|
89 |
+
# ('stage2', torch.Size([1, 96, 48, 48])),
|
90 |
+
# ('stage3', torch.Size([1, 192, 24, 24])),
|
91 |
+
# ('stage4', torch.Size([1, 512, 12, 12]))]
|
92 |
```
|
93 |
|
94 |
## Citation
|