hassonofer commited on
Commit
a030bb1
·
verified ·
1 Parent(s): 96f6ede

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -34,17 +34,17 @@ The species list is derived from the Collins bird guide [^1].
34
  import birder
35
  from birder.inference.classification import infer_image
36
 
37
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
38
 
39
  # Get the image size the model was trained on
40
- size = birder.get_size_from_signature(signature)
41
 
42
  # Create an inference transform
43
- transform = birder.classification_transform(size, rgb_stats)
44
 
45
  image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
46
  (out, _) = infer_image(net, image, transform)
47
- # out is a NumPy array with shape of (1, num_classes), representing class probabilities.
48
  ```
49
 
50
  ### Image Embeddings
@@ -53,17 +53,17 @@ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
53
  import birder
54
  from birder.inference.classification import infer_image
55
 
56
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
57
 
58
  # Get the image size the model was trained on
59
- size = birder.get_size_from_signature(signature)
60
 
61
  # Create an inference transform
62
- transform = birder.classification_transform(size, rgb_stats)
63
 
64
  image = "path/to/image.jpeg" # or a PIL image
65
  (out, embedding) = infer_image(net, image, transform, return_embedding=True)
66
- # embedding is a NumPy array with shape of (1, embedding_size)
67
  ```
68
 
69
  ### Detection Feature Map
@@ -72,23 +72,23 @@ image = "path/to/image.jpeg" # or a PIL image
72
  from PIL import Image
73
  import birder
74
 
75
- (net, class_to_idx, signature, rgb_stats) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
76
 
77
  # Get the image size the model was trained on
78
- size = birder.get_size_from_signature(signature)
79
 
80
  # Create an inference transform
81
- transform = birder.classification_transform(size, rgb_stats)
82
 
83
  image = Image.open("path/to/image.jpeg")
84
  features = net.detection_features(transform(image).unsqueeze(0))
85
  # features is a dict (stage name -> torch.Tensor)
86
  print([(k, v.size()) for k, v in features.items()])
87
  # Output example:
88
- # [('stage1', torch.Size([1, 96, 96, 96])),
89
- # ('stage2', torch.Size([1, 192, 48, 48])),
90
- # ('stage3', torch.Size([1, 384, 24, 24])),
91
- # ('stage4', torch.Size([1, 768, 12, 12]))]
92
  ```
93
 
94
  ## Citation
 
34
  import birder
35
  from birder.inference.classification import infer_image
36
 
37
+ (net, model_info) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
38
 
39
  # Get the image size the model was trained on
40
+ size = birder.get_size_from_signature(model_info.signature)
41
 
42
  # Create an inference transform
43
+ transform = birder.classification_transform(size, model_info.rgb_stats)
44
 
45
  image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
46
  (out, _) = infer_image(net, image, transform)
47
+ # out is a NumPy array with shape of (1, 707), representing class probabilities.
48
  ```
49
 
50
  ### Image Embeddings
 
53
  import birder
54
  from birder.inference.classification import infer_image
55
 
56
+ (net, model_info) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
57
 
58
  # Get the image size the model was trained on
59
+ size = birder.get_size_from_signature(model_info.signature)
60
 
61
  # Create an inference transform
62
+ transform = birder.classification_transform(size, model_info.rgb_stats)
63
 
64
  image = "path/to/image.jpeg" # or a PIL image
65
  (out, embedding) = infer_image(net, image, transform, return_embedding=True)
66
+ # embedding is a NumPy array with shape of (1, 1280)
67
  ```
68
 
69
  ### Detection Feature Map
 
72
  from PIL import Image
73
  import birder
74
 
75
+ (net, model_info) = birder.load_pretrained_model("mobilenet_v4_l_eu-common", inference=True)
76
 
77
  # Get the image size the model was trained on
78
+ size = birder.get_size_from_signature(model_info.signature)
79
 
80
  # Create an inference transform
81
+ transform = birder.classification_transform(size, model_info.rgb_stats)
82
 
83
  image = Image.open("path/to/image.jpeg")
84
  features = net.detection_features(transform(image).unsqueeze(0))
85
  # features is a dict (stage name -> torch.Tensor)
86
  print([(k, v.size()) for k, v in features.items()])
87
  # Output example:
88
+ # [('stage1', torch.Size([1, 48, 96, 96])),
89
+ # ('stage2', torch.Size([1, 96, 48, 48])),
90
+ # ('stage3', torch.Size([1, 192, 24, 24])),
91
+ # ('stage4', torch.Size([1, 512, 12, 12]))]
92
  ```
93
 
94
  ## Citation