--- tags: - image-feature-extraction - birder - pytorch library_name: birder license: apache-2.0 --- # Model Card for hiera_abswin_base_mim A Hiera with absolute window position embedding strategy image encoder pre-trained using Masked Image Modeling (MIM). This model has *not* been fine-tuned for a specific classification task and is intended to be used as a general-purpose feature extractor or a backbone for downstream tasks like object detection, segmentation, or custom classification. ## Model Details - **Model Type:** Image encoder and detection backbone - **Model Stats:** - Params (M): 50.5 - Input image size: 224 x 224 - **Dataset:** Trained on a diverse dataset of approximately 12M images, including: - iNaturalist 2021 (~3.3M) - WebVision-2.0 (~1.5M random subset) - imagenet-w21-webp-wds (~1M random subset) - SA-1B (~220K random subset of 20 chunks) - COCO (~120K) - NABirds (~48K) - GLDv2 (~40K random subset of 6 chunks) - Birdsnap v1.1 (~44K) - CUB-200 2011 (~18K) - The Birder dataset (~6M, private dataset) - **Papers:** - Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: - Window Attention is Bugged: How not to Interpolate Position Embeddings: ## Model Usage ### Image Embeddings ```python import birder from birder.inference.classification import infer_image (net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = "path/to/image.jpeg" # or a PIL image (out, embedding) = infer_image(net, image, transform, return_embedding=True) # embedding is a NumPy array with shape of (1, 768) ``` ### Detection Feature Map ```python from PIL import Image import birder (net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = Image.open("path/to/image.jpeg") features = net.detection_features(transform(image).unsqueeze(0)) # features is a dict (stage name -> torch.Tensor) print([(k, v.size()) for k, v in features.items()]) # Output example: # [('stage1', torch.Size([1, 96, 56, 56])), # ('stage2', torch.Size([1, 192, 28, 28])), # ('stage3', torch.Size([1, 384, 14, 14])), # ('stage4', torch.Size([1, 768, 7, 7]))] ``` ## Citation ```bibtex @misc{ryali2023hierahierarchicalvisiontransformer, title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles}, author={Chaitanya Ryali and Yuan-Ting Hu and Daniel Bolya and Chen Wei and Haoqi Fan and Po-Yao Huang and Vaibhav Aggarwal and Arkabandhu Chowdhury and Omid Poursaeed and Judy Hoffman and Jitendra Malik and Yanghao Li and Christoph Feichtenhofer}, year={2023}, eprint={2306.00989}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2306.00989}, } @misc{bolya2023windowattentionbuggedinterpolate, title={Window Attention is Bugged: How not to Interpolate Position Embeddings}, author={Daniel Bolya and Chaitanya Ryali and Judy Hoffman and Christoph Feichtenhofer}, year={2023}, eprint={2311.05613}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2311.05613}, } ```