File size: 3,125 Bytes
d846ef3
 
 
 
330b786
d846ef3
 
 
 
fe4293a
 
d846ef3
 
330b786
d846ef3
f33bc23
d846ef3
 
 
330b786
d846ef3
 
 
 
 
 
 
330b786
c98d215
330b786
d846ef3
 
 
 
 
f33bc23
d846ef3
dd45659
fe4293a
d846ef3
c98d215
 
d846ef3
 
 
 
 
 
 
 
fe4293a
d846ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4293a
 
 
 
ccf2594
 
 
 
 
 
c1a558c
ccf2594
e3d1473
ccf2594
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
language:
- th
license: apache-2.0
library_name: transformers
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
- google/fleurs
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Medium Thai Combined V3 - biodatlab
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 th
      type: mozilla-foundation/common_voice_11_0
      config: th
      split: test
      args: th
    metrics:
    - type: wer
      value: 8.44
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium (Thai): Combined V3

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on augmented versions of the mozilla-foundation/common_voice_13_0 th, google/fleurs, and curated datasets.
It achieves the following results (NOT-UP-TO-DATE) on the common-voice-11 evaluation set:
- Loss: 0.1475
- WER: 13.03 (without Tokenizer)
- WER: 8.44 (with Deepcut Tokenizer)

## Model description

Use the model with huggingface's `transformers` as follows:

```py
from transformers import pipeline

MODEL_NAME = "biodatlab/whisper-medium-th-combined"  # specify the model name
lang = "th"  # change to Thai langauge

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(
  language=lang,
  task="transcribe"
)
text = pipe("audio.mp3")["text"] # give audio mp3 and transcribe text
```


## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0679        | 2.09  | 5000 | 0.1475          | 13.03 |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 2.1.0
- Datasets 2.13.1
- Tokenizers 0.13.3

## Citation

Cite using Bibtex:

```
@misc {thonburian_whisper_med,
    author       = { Atirut Boribalburephan, Zaw Htet Aung, Knot Pipatsrisawat, Titipat Achakulvisut },
    title        = { Thonburian Whisper: A fine-tuned Whisper model for Thai automatic speech recognition },
    year         = 2022,
    url          = { https://huggingface.co/biodatlab/whisper-th-medium-combined },
    doi          = { 10.57967/hf/0226 },
    publisher    = { Hugging Face }
}
```