binglinchengxia commited on
Commit
e2e06a3
·
verified ·
1 Parent(s): 92d23e1

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Math-7B
3
+ library_name: transformers
4
+ model_name: Qwen-2.5-7B_Base_Math_smalllr
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen-2.5-7B_Base_Math_smalllr
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="binglinchengxia/Qwen-2.5-7B_Base_Math_smalllr", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/kwai-intelligent/huggingface/runs/9okkyr7c)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.00012216681254848273,
4
+ "train_runtime": 12383.6526,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.606,
7
+ "train_steps_per_second": 0.005
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Math-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 4096,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0.dev0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99af4b525d25f4718ba7ea4943d793c2a62d63e0360eb9ea93a7f493730cdbe
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:853c02ebd3e6091ae3e4dbb09b1cad80673da35965134aff9513c2ef91414a49
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77c512bc1a3f8e4d409071af0612572b1ae96c7ac71f51c4f67eae0e59ede2a0
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec319a3739717e60e7b5c1ddf4516be8495cda9f42892af2b35d13d0c2bb1883
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.00012216681254848273,
4
+ "train_runtime": 12383.6526,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.606,
7
+ "train_steps_per_second": 0.005
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,913 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 100,
6
+ "global_step": 67,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 588.9654293060303,
13
+ "epoch": 0.014925373134328358,
14
+ "grad_norm": 2.6534500122070312,
15
+ "kl": 0.0,
16
+ "learning_rate": 4.2857142857142857e-07,
17
+ "loss": 0.0,
18
+ "reward": 0.6618303954601288,
19
+ "reward_std": 0.3340754471719265,
20
+ "rewards/accuracy_reward": 0.6618303954601288,
21
+ "rewards/format_reward": 0.0,
22
+ "step": 1
23
+ },
24
+ {
25
+ "completion_length": 574.2835121154785,
26
+ "epoch": 0.029850746268656716,
27
+ "grad_norm": 1.5236740112304688,
28
+ "kl": 0.0,
29
+ "learning_rate": 8.571428571428571e-07,
30
+ "loss": 0.0,
31
+ "reward": 0.6640625298023224,
32
+ "reward_std": 0.35328569635748863,
33
+ "rewards/accuracy_reward": 0.6640625298023224,
34
+ "rewards/format_reward": 0.0,
35
+ "step": 2
36
+ },
37
+ {
38
+ "completion_length": 603.0803833007812,
39
+ "epoch": 0.04477611940298507,
40
+ "grad_norm": 1.810470461845398,
41
+ "kl": 0.00018996000289916992,
42
+ "learning_rate": 1.2857142857142856e-06,
43
+ "loss": 0.0,
44
+ "reward": 0.6685268227010965,
45
+ "reward_std": 0.3423070926219225,
46
+ "rewards/accuracy_reward": 0.6685268227010965,
47
+ "rewards/format_reward": 0.0,
48
+ "step": 3
49
+ },
50
+ {
51
+ "completion_length": 662.1841831207275,
52
+ "epoch": 0.05970149253731343,
53
+ "grad_norm": 2.944155693054199,
54
+ "kl": 0.00020492076873779297,
55
+ "learning_rate": 1.7142857142857143e-06,
56
+ "loss": 0.0,
57
+ "reward": 0.6506696715950966,
58
+ "reward_std": 0.3272070288658142,
59
+ "rewards/accuracy_reward": 0.6506696715950966,
60
+ "rewards/format_reward": 0.0,
61
+ "step": 4
62
+ },
63
+ {
64
+ "completion_length": 611.7890968322754,
65
+ "epoch": 0.07462686567164178,
66
+ "grad_norm": 0.5025805234909058,
67
+ "kl": 0.00025087594985961914,
68
+ "learning_rate": 2.142857142857143e-06,
69
+ "loss": 0.0,
70
+ "reward": 0.6216518208384514,
71
+ "reward_std": 0.2848156485706568,
72
+ "rewards/accuracy_reward": 0.6216518208384514,
73
+ "rewards/format_reward": 0.0,
74
+ "step": 5
75
+ },
76
+ {
77
+ "completion_length": 606.5625228881836,
78
+ "epoch": 0.08955223880597014,
79
+ "grad_norm": 1.21269953250885,
80
+ "kl": 0.0005187392234802246,
81
+ "learning_rate": 2.571428571428571e-06,
82
+ "loss": 0.0,
83
+ "reward": 0.683035746216774,
84
+ "reward_std": 0.3044421002268791,
85
+ "rewards/accuracy_reward": 0.683035746216774,
86
+ "rewards/format_reward": 0.0,
87
+ "step": 6
88
+ },
89
+ {
90
+ "completion_length": 600.8437728881836,
91
+ "epoch": 0.1044776119402985,
92
+ "grad_norm": 0.5010935664176941,
93
+ "kl": 0.0006451606750488281,
94
+ "learning_rate": 3e-06,
95
+ "loss": 0.0,
96
+ "reward": 0.7120536044239998,
97
+ "reward_std": 0.27275579422712326,
98
+ "rewards/accuracy_reward": 0.7120536044239998,
99
+ "rewards/format_reward": 0.0,
100
+ "step": 7
101
+ },
102
+ {
103
+ "completion_length": 604.5390853881836,
104
+ "epoch": 0.11940298507462686,
105
+ "grad_norm": 1.0228732824325562,
106
+ "kl": 0.0014821290969848633,
107
+ "learning_rate": 2.9979443021318607e-06,
108
+ "loss": 0.0001,
109
+ "reward": 0.7533482499420643,
110
+ "reward_std": 0.26047475449740887,
111
+ "rewards/accuracy_reward": 0.7533482499420643,
112
+ "rewards/format_reward": 0.0,
113
+ "step": 8
114
+ },
115
+ {
116
+ "completion_length": 628.8348484039307,
117
+ "epoch": 0.13432835820895522,
118
+ "grad_norm": 0.6632704734802246,
119
+ "kl": 0.0016405582427978516,
120
+ "learning_rate": 2.99178284305241e-06,
121
+ "loss": 0.0001,
122
+ "reward": 0.6897321715950966,
123
+ "reward_std": 0.2548013962805271,
124
+ "rewards/accuracy_reward": 0.6897321715950966,
125
+ "rewards/format_reward": 0.0,
126
+ "step": 9
127
+ },
128
+ {
129
+ "completion_length": 626.3750247955322,
130
+ "epoch": 0.14925373134328357,
131
+ "grad_norm": 1.5124034881591797,
132
+ "kl": 0.0020029544830322266,
133
+ "learning_rate": 2.981532510892707e-06,
134
+ "loss": 0.0001,
135
+ "reward": 0.7689732499420643,
136
+ "reward_std": 0.2507007820531726,
137
+ "rewards/accuracy_reward": 0.7689732499420643,
138
+ "rewards/format_reward": 0.0,
139
+ "step": 10
140
+ },
141
+ {
142
+ "completion_length": 653.0457916259766,
143
+ "epoch": 0.16417910447761194,
144
+ "grad_norm": 0.3473568558692932,
145
+ "kl": 0.0020618438720703125,
146
+ "learning_rate": 2.9672214011007086e-06,
147
+ "loss": 0.0001,
148
+ "reward": 0.7109375335276127,
149
+ "reward_std": 0.24070814065635204,
150
+ "rewards/accuracy_reward": 0.7109375335276127,
151
+ "rewards/format_reward": 0.0,
152
+ "step": 11
153
+ },
154
+ {
155
+ "completion_length": 624.7511444091797,
156
+ "epoch": 0.1791044776119403,
157
+ "grad_norm": 4.333103656768799,
158
+ "kl": 0.006229400634765625,
159
+ "learning_rate": 2.9488887394336023e-06,
160
+ "loss": 0.0002,
161
+ "reward": 0.6964286062866449,
162
+ "reward_std": 0.25179733615368605,
163
+ "rewards/accuracy_reward": 0.6964286062866449,
164
+ "rewards/format_reward": 0.0,
165
+ "step": 12
166
+ },
167
+ {
168
+ "completion_length": 638.3526973724365,
169
+ "epoch": 0.19402985074626866,
170
+ "grad_norm": 0.12630324065685272,
171
+ "kl": 0.0025043487548828125,
172
+ "learning_rate": 2.9265847744427307e-06,
173
+ "loss": 0.0001,
174
+ "reward": 0.7578125335276127,
175
+ "reward_std": 0.2057263469323516,
176
+ "rewards/accuracy_reward": 0.7578125335276127,
177
+ "rewards/format_reward": 0.0,
178
+ "step": 13
179
+ },
180
+ {
181
+ "completion_length": 594.9152069091797,
182
+ "epoch": 0.208955223880597,
183
+ "grad_norm": 0.1356700211763382,
184
+ "kl": 0.002197265625,
185
+ "learning_rate": 2.9003706397458025e-06,
186
+ "loss": 0.0001,
187
+ "reward": 0.7857143208384514,
188
+ "reward_std": 0.16860559629276395,
189
+ "rewards/accuracy_reward": 0.7857143208384514,
190
+ "rewards/format_reward": 0.0,
191
+ "step": 14
192
+ },
193
+ {
194
+ "completion_length": 577.4933338165283,
195
+ "epoch": 0.22388059701492538,
196
+ "grad_norm": 0.12567110359668732,
197
+ "kl": 0.0028967857360839844,
198
+ "learning_rate": 2.8703181864639013e-06,
199
+ "loss": 0.0001,
200
+ "reward": 0.820312537252903,
201
+ "reward_std": 0.17374721262603998,
202
+ "rewards/accuracy_reward": 0.820312537252903,
203
+ "rewards/format_reward": 0.0,
204
+ "step": 15
205
+ },
206
+ {
207
+ "completion_length": 593.5212230682373,
208
+ "epoch": 0.23880597014925373,
209
+ "grad_norm": 0.1694745570421219,
210
+ "kl": 0.0028734207153320312,
211
+ "learning_rate": 2.8365097862825516e-06,
212
+ "loss": 0.0001,
213
+ "reward": 0.7645089589059353,
214
+ "reward_std": 0.2047506500966847,
215
+ "rewards/accuracy_reward": 0.7645089589059353,
216
+ "rewards/format_reward": 0.0,
217
+ "step": 16
218
+ },
219
+ {
220
+ "completion_length": 585.3772563934326,
221
+ "epoch": 0.2537313432835821,
222
+ "grad_norm": 0.23806491494178772,
223
+ "kl": 0.0028820037841796875,
224
+ "learning_rate": 2.7990381056766585e-06,
225
+ "loss": 0.0001,
226
+ "reward": 0.7645089663565159,
227
+ "reward_std": 0.2365775415673852,
228
+ "rewards/accuracy_reward": 0.7645089663565159,
229
+ "rewards/format_reward": 0.0,
230
+ "step": 17
231
+ },
232
+ {
233
+ "completion_length": 589.7611808776855,
234
+ "epoch": 0.26865671641791045,
235
+ "grad_norm": 0.15571320056915283,
236
+ "kl": 0.002490997314453125,
237
+ "learning_rate": 2.758005851918136e-06,
238
+ "loss": 0.0001,
239
+ "reward": 0.7544643264263868,
240
+ "reward_std": 0.21331929927691817,
241
+ "rewards/accuracy_reward": 0.7544643264263868,
242
+ "rewards/format_reward": 0.0,
243
+ "step": 18
244
+ },
245
+ {
246
+ "completion_length": 603.9732398986816,
247
+ "epoch": 0.2835820895522388,
248
+ "grad_norm": 0.20735572278499603,
249
+ "kl": 0.0032434463500976562,
250
+ "learning_rate": 2.713525491562421e-06,
251
+ "loss": 0.0001,
252
+ "reward": 0.7667411062866449,
253
+ "reward_std": 0.17671918543055654,
254
+ "rewards/accuracy_reward": 0.7667411062866449,
255
+ "rewards/format_reward": 0.0,
256
+ "step": 19
257
+ },
258
+ {
259
+ "completion_length": 608.0290489196777,
260
+ "epoch": 0.29850746268656714,
261
+ "grad_norm": 0.3643544912338257,
262
+ "kl": 0.0036559104919433594,
263
+ "learning_rate": 2.6657189421854562e-06,
264
+ "loss": 0.0001,
265
+ "reward": 0.7645089607685804,
266
+ "reward_std": 0.16924317786470056,
267
+ "rewards/accuracy_reward": 0.7645089607685804,
268
+ "rewards/format_reward": 0.0,
269
+ "step": 20
270
+ },
271
+ {
272
+ "completion_length": 604.2723560333252,
273
+ "epoch": 0.31343283582089554,
274
+ "grad_norm": 0.22008363902568817,
275
+ "kl": 0.0029211044311523438,
276
+ "learning_rate": 2.6147172382160914e-06,
277
+ "loss": 0.0001,
278
+ "reward": 0.7466518208384514,
279
+ "reward_std": 0.14925407292321324,
280
+ "rewards/accuracy_reward": 0.7466518208384514,
281
+ "rewards/format_reward": 0.0,
282
+ "step": 21
283
+ },
284
+ {
285
+ "completion_length": 604.7009181976318,
286
+ "epoch": 0.3283582089552239,
287
+ "grad_norm": 0.5150439739227295,
288
+ "kl": 0.0036449432373046875,
289
+ "learning_rate": 2.5606601717798212e-06,
290
+ "loss": 0.0001,
291
+ "reward": 0.7466518171131611,
292
+ "reward_std": 0.20275325747206807,
293
+ "rewards/accuracy_reward": 0.7466518171131611,
294
+ "rewards/format_reward": 0.0,
295
+ "step": 22
296
+ },
297
+ {
298
+ "completion_length": 539.8783779144287,
299
+ "epoch": 0.34328358208955223,
300
+ "grad_norm": 0.08835027366876602,
301
+ "kl": 0.0028405189514160156,
302
+ "learning_rate": 2.5036959095382875e-06,
303
+ "loss": 0.0001,
304
+ "reward": 0.8080357424914837,
305
+ "reward_std": 0.151585946790874,
306
+ "rewards/accuracy_reward": 0.8080357424914837,
307
+ "rewards/format_reward": 0.0,
308
+ "step": 23
309
+ },
310
+ {
311
+ "completion_length": 617.0491275787354,
312
+ "epoch": 0.3582089552238806,
313
+ "grad_norm": 0.11819685250520706,
314
+ "kl": 0.0034465789794921875,
315
+ "learning_rate": 2.4439805865747562e-06,
316
+ "loss": 0.0001,
317
+ "reward": 0.7209821790456772,
318
+ "reward_std": 0.20670274924486876,
319
+ "rewards/accuracy_reward": 0.7209821790456772,
320
+ "rewards/format_reward": 0.0,
321
+ "step": 24
322
+ },
323
+ {
324
+ "completion_length": 561.9810562133789,
325
+ "epoch": 0.373134328358209,
326
+ "grad_norm": 0.1162777692079544,
327
+ "kl": 0.0033864974975585938,
328
+ "learning_rate": 2.3816778784387097e-06,
329
+ "loss": 0.0001,
330
+ "reward": 0.8359375335276127,
331
+ "reward_std": 0.12302456051111221,
332
+ "rewards/accuracy_reward": 0.8359375335276127,
333
+ "rewards/format_reward": 0.0,
334
+ "step": 25
335
+ },
336
+ {
337
+ "completion_length": 603.2611846923828,
338
+ "epoch": 0.3880597014925373,
339
+ "grad_norm": 0.11348129063844681,
340
+ "kl": 0.003231048583984375,
341
+ "learning_rate": 2.316958552522541e-06,
342
+ "loss": 0.0001,
343
+ "reward": 0.7555803954601288,
344
+ "reward_std": 0.19700363464653492,
345
+ "rewards/accuracy_reward": 0.7555803954601288,
346
+ "rewards/format_reward": 0.0,
347
+ "step": 26
348
+ },
349
+ {
350
+ "completion_length": 576.3515892028809,
351
+ "epoch": 0.40298507462686567,
352
+ "grad_norm": 0.10333164781332016,
353
+ "kl": 0.003551483154296875,
354
+ "learning_rate": 2.25e-06,
355
+ "loss": 0.0001,
356
+ "reward": 0.7332589626312256,
357
+ "reward_std": 0.16596951289102435,
358
+ "rewards/accuracy_reward": 0.7332589626312256,
359
+ "rewards/format_reward": 0.0,
360
+ "step": 27
361
+ },
362
+ {
363
+ "completion_length": 576.9352893829346,
364
+ "epoch": 0.417910447761194,
365
+ "grad_norm": 0.08400996029376984,
366
+ "kl": 0.003052234649658203,
367
+ "learning_rate": 2.18098574960932e-06,
368
+ "loss": 0.0001,
369
+ "reward": 0.7656250335276127,
370
+ "reward_std": 0.16529620438814163,
371
+ "rewards/accuracy_reward": 0.7656250335276127,
372
+ "rewards/format_reward": 0.0,
373
+ "step": 28
374
+ },
375
+ {
376
+ "completion_length": 572.9832820892334,
377
+ "epoch": 0.43283582089552236,
378
+ "grad_norm": 0.09134360402822495,
379
+ "kl": 0.0033164024353027344,
380
+ "learning_rate": 2.1101049646137005e-06,
381
+ "loss": 0.0001,
382
+ "reward": 0.7243303973227739,
383
+ "reward_std": 0.18314252886921167,
384
+ "rewards/accuracy_reward": 0.7243303973227739,
385
+ "rewards/format_reward": 0.0,
386
+ "step": 29
387
+ },
388
+ {
389
+ "completion_length": 598.8917636871338,
390
+ "epoch": 0.44776119402985076,
391
+ "grad_norm": 0.0819033682346344,
392
+ "kl": 0.003021240234375,
393
+ "learning_rate": 2.03755192431795e-06,
394
+ "loss": 0.0001,
395
+ "reward": 0.772321455180645,
396
+ "reward_std": 0.20655824523419142,
397
+ "rewards/accuracy_reward": 0.772321455180645,
398
+ "rewards/format_reward": 0.0,
399
+ "step": 30
400
+ },
401
+ {
402
+ "completion_length": 568.7176551818848,
403
+ "epoch": 0.4626865671641791,
404
+ "grad_norm": 0.1345580369234085,
405
+ "kl": 0.004252433776855469,
406
+ "learning_rate": 1.963525491562421e-06,
407
+ "loss": 0.0002,
408
+ "reward": 0.7767857536673546,
409
+ "reward_std": 0.18306655017659068,
410
+ "rewards/accuracy_reward": 0.7767857536673546,
411
+ "rewards/format_reward": 0.0,
412
+ "step": 31
413
+ },
414
+ {
415
+ "completion_length": 579.5647583007812,
416
+ "epoch": 0.47761194029850745,
417
+ "grad_norm": 0.08470705151557922,
418
+ "kl": 0.0035343170166015625,
419
+ "learning_rate": 1.888228567653781e-06,
420
+ "loss": 0.0001,
421
+ "reward": 0.7957589663565159,
422
+ "reward_std": 0.17081871908158064,
423
+ "rewards/accuracy_reward": 0.7957589663565159,
424
+ "rewards/format_reward": 0.0,
425
+ "step": 32
426
+ },
427
+ {
428
+ "completion_length": 609.633955001831,
429
+ "epoch": 0.4925373134328358,
430
+ "grad_norm": 0.07784049212932587,
431
+ "kl": 0.0028290748596191406,
432
+ "learning_rate": 1.8118675362266389e-06,
433
+ "loss": 0.0001,
434
+ "reward": 0.7578125335276127,
435
+ "reward_std": 0.1949409432709217,
436
+ "rewards/accuracy_reward": 0.7578125335276127,
437
+ "rewards/format_reward": 0.0,
438
+ "step": 33
439
+ },
440
+ {
441
+ "completion_length": 622.8817157745361,
442
+ "epoch": 0.5074626865671642,
443
+ "grad_norm": 0.08559560030698776,
444
+ "kl": 0.0029349327087402344,
445
+ "learning_rate": 1.7346516975603465e-06,
446
+ "loss": 0.0001,
447
+ "reward": 0.7488839663565159,
448
+ "reward_std": 0.19219930842518806,
449
+ "rewards/accuracy_reward": 0.7488839663565159,
450
+ "rewards/format_reward": 0.0,
451
+ "step": 34
452
+ },
453
+ {
454
+ "completion_length": 612.6897583007812,
455
+ "epoch": 0.5223880597014925,
456
+ "grad_norm": 0.07799447327852249,
457
+ "kl": 0.002971649169921875,
458
+ "learning_rate": 1.6567926949014804e-06,
459
+ "loss": 0.0001,
460
+ "reward": 0.7533482573926449,
461
+ "reward_std": 0.1705156215466559,
462
+ "rewards/accuracy_reward": 0.7533482573926449,
463
+ "rewards/format_reward": 0.0,
464
+ "step": 35
465
+ },
466
+ {
467
+ "completion_length": 575.945333480835,
468
+ "epoch": 0.5373134328358209,
469
+ "grad_norm": 0.11088297516107559,
470
+ "kl": 0.00347900390625,
471
+ "learning_rate": 1.578503934364416e-06,
472
+ "loss": 0.0001,
473
+ "reward": 0.753348246216774,
474
+ "reward_std": 0.18251199880614877,
475
+ "rewards/accuracy_reward": 0.753348246216774,
476
+ "rewards/format_reward": 0.0,
477
+ "step": 36
478
+ },
479
+ {
480
+ "completion_length": 575.522346496582,
481
+ "epoch": 0.5522388059701493,
482
+ "grad_norm": 0.07977250218391418,
483
+ "kl": 0.003589630126953125,
484
+ "learning_rate": 1.5e-06,
485
+ "loss": 0.0001,
486
+ "reward": 0.768973246216774,
487
+ "reward_std": 0.172359649091959,
488
+ "rewards/accuracy_reward": 0.768973246216774,
489
+ "rewards/format_reward": 0.0,
490
+ "step": 37
491
+ },
492
+ {
493
+ "completion_length": 574.8672142028809,
494
+ "epoch": 0.5671641791044776,
495
+ "grad_norm": 0.07976463437080383,
496
+ "kl": 0.0032825469970703125,
497
+ "learning_rate": 1.4214960656355842e-06,
498
+ "loss": 0.0001,
499
+ "reward": 0.8125000409781933,
500
+ "reward_std": 0.12335904035717249,
501
+ "rewards/accuracy_reward": 0.8125000409781933,
502
+ "rewards/format_reward": 0.0,
503
+ "step": 38
504
+ },
505
+ {
506
+ "completion_length": 568.9866352081299,
507
+ "epoch": 0.582089552238806,
508
+ "grad_norm": 0.11306460946798325,
509
+ "kl": 0.004673480987548828,
510
+ "learning_rate": 1.3432073050985201e-06,
511
+ "loss": 0.0002,
512
+ "reward": 0.7723214589059353,
513
+ "reward_std": 0.15484962752088904,
514
+ "rewards/accuracy_reward": 0.7723214589059353,
515
+ "rewards/format_reward": 0.0,
516
+ "step": 39
517
+ },
518
+ {
519
+ "completion_length": 607.1752510070801,
520
+ "epoch": 0.5970149253731343,
521
+ "grad_norm": 0.1425676792860031,
522
+ "kl": 0.0033125877380371094,
523
+ "learning_rate": 1.2653483024396534e-06,
524
+ "loss": 0.0001,
525
+ "reward": 0.772321455180645,
526
+ "reward_std": 0.17449467908591032,
527
+ "rewards/accuracy_reward": 0.772321455180645,
528
+ "rewards/format_reward": 0.0,
529
+ "step": 40
530
+ },
531
+ {
532
+ "completion_length": 534.8303833007812,
533
+ "epoch": 0.6119402985074627,
534
+ "grad_norm": 0.0919041708111763,
535
+ "kl": 0.004061698913574219,
536
+ "learning_rate": 1.1881324637733612e-06,
537
+ "loss": 0.0002,
538
+ "reward": 0.7745536006987095,
539
+ "reward_std": 0.16172579256817698,
540
+ "rewards/accuracy_reward": 0.7745536006987095,
541
+ "rewards/format_reward": 0.0,
542
+ "step": 41
543
+ },
544
+ {
545
+ "completion_length": 560.0078372955322,
546
+ "epoch": 0.6268656716417911,
547
+ "grad_norm": 0.0930609181523323,
548
+ "kl": 0.0036792755126953125,
549
+ "learning_rate": 1.1117714323462188e-06,
550
+ "loss": 0.0001,
551
+ "reward": 0.8158482536673546,
552
+ "reward_std": 0.170708823017776,
553
+ "rewards/accuracy_reward": 0.8158482536673546,
554
+ "rewards/format_reward": 0.0,
555
+ "step": 42
556
+ },
557
+ {
558
+ "completion_length": 601.4565029144287,
559
+ "epoch": 0.6417910447761194,
560
+ "grad_norm": 0.08595103770494461,
561
+ "kl": 0.0032434463500976562,
562
+ "learning_rate": 1.036474508437579e-06,
563
+ "loss": 0.0001,
564
+ "reward": 0.7522321753203869,
565
+ "reward_std": 0.16597021045163274,
566
+ "rewards/accuracy_reward": 0.7522321753203869,
567
+ "rewards/format_reward": 0.0,
568
+ "step": 43
569
+ },
570
+ {
571
+ "completion_length": 553.7667694091797,
572
+ "epoch": 0.6567164179104478,
573
+ "grad_norm": 0.09559870511293411,
574
+ "kl": 0.004054069519042969,
575
+ "learning_rate": 9.624480756820497e-07,
576
+ "loss": 0.0002,
577
+ "reward": 0.7767857499420643,
578
+ "reward_std": 0.14699635887518525,
579
+ "rewards/accuracy_reward": 0.7767857499420643,
580
+ "rewards/format_reward": 0.0,
581
+ "step": 44
582
+ },
583
+ {
584
+ "completion_length": 572.5535984039307,
585
+ "epoch": 0.6716417910447762,
586
+ "grad_norm": 0.07558111101388931,
587
+ "kl": 0.0035276412963867188,
588
+ "learning_rate": 8.898950353863e-07,
589
+ "loss": 0.0001,
590
+ "reward": 0.7901786155998707,
591
+ "reward_std": 0.15063981525599957,
592
+ "rewards/accuracy_reward": 0.7901786155998707,
593
+ "rewards/format_reward": 0.0,
594
+ "step": 45
595
+ },
596
+ {
597
+ "completion_length": 627.7455635070801,
598
+ "epoch": 0.6865671641791045,
599
+ "grad_norm": 0.08073041588068008,
600
+ "kl": 0.0030755996704101562,
601
+ "learning_rate": 8.190142503906799e-07,
602
+ "loss": 0.0001,
603
+ "reward": 0.7421875447034836,
604
+ "reward_std": 0.19877350237220526,
605
+ "rewards/accuracy_reward": 0.7421875447034836,
606
+ "rewards/format_reward": 0.0,
607
+ "step": 46
608
+ },
609
+ {
610
+ "completion_length": 561.7902069091797,
611
+ "epoch": 0.7014925373134329,
612
+ "grad_norm": 0.08770101517438889,
613
+ "kl": 0.0040454864501953125,
614
+ "learning_rate": 7.500000000000003e-07,
615
+ "loss": 0.0002,
616
+ "reward": 0.812500037252903,
617
+ "reward_std": 0.18986603012308478,
618
+ "rewards/accuracy_reward": 0.812500037252903,
619
+ "rewards/format_reward": 0.0,
620
+ "step": 47
621
+ },
622
+ {
623
+ "completion_length": 582.2556076049805,
624
+ "epoch": 0.7164179104477612,
625
+ "grad_norm": 0.08533724397420883,
626
+ "kl": 0.0029554367065429688,
627
+ "learning_rate": 6.830414474774594e-07,
628
+ "loss": 0.0001,
629
+ "reward": 0.8058036006987095,
630
+ "reward_std": 0.1576297921128571,
631
+ "rewards/accuracy_reward": 0.8058036006987095,
632
+ "rewards/format_reward": 0.0,
633
+ "step": 48
634
+ },
635
+ {
636
+ "completion_length": 613.2410888671875,
637
+ "epoch": 0.7313432835820896,
638
+ "grad_norm": 0.08394148200750351,
639
+ "kl": 0.0036144256591796875,
640
+ "learning_rate": 6.183221215612905e-07,
641
+ "loss": 0.0001,
642
+ "reward": 0.7667411081492901,
643
+ "reward_std": 0.20444503612816334,
644
+ "rewards/accuracy_reward": 0.7667411081492901,
645
+ "rewards/format_reward": 0.0,
646
+ "step": 49
647
+ },
648
+ {
649
+ "completion_length": 596.3806076049805,
650
+ "epoch": 0.746268656716418,
651
+ "grad_norm": 0.09445685148239136,
652
+ "kl": 0.0038156509399414062,
653
+ "learning_rate": 5.560194134252441e-07,
654
+ "loss": 0.0002,
655
+ "reward": 0.7154018096625805,
656
+ "reward_std": 0.16886480245739222,
657
+ "rewards/accuracy_reward": 0.7154018096625805,
658
+ "rewards/format_reward": 0.0,
659
+ "step": 50
660
+ },
661
+ {
662
+ "completion_length": 588.2489070892334,
663
+ "epoch": 0.7611940298507462,
664
+ "grad_norm": 0.1409761756658554,
665
+ "kl": 0.0034036636352539062,
666
+ "learning_rate": 4.963040904617131e-07,
667
+ "loss": 0.0001,
668
+ "reward": 0.7779018171131611,
669
+ "reward_std": 0.15530426986515522,
670
+ "rewards/accuracy_reward": 0.7779018171131611,
671
+ "rewards/format_reward": 0.0,
672
+ "step": 51
673
+ },
674
+ {
675
+ "completion_length": 582.168550491333,
676
+ "epoch": 0.7761194029850746,
677
+ "grad_norm": 0.08169642090797424,
678
+ "kl": 0.0034346580505371094,
679
+ "learning_rate": 4.3933982822017883e-07,
680
+ "loss": 0.0001,
681
+ "reward": 0.7421875409781933,
682
+ "reward_std": 0.17119849054142833,
683
+ "rewards/accuracy_reward": 0.7421875409781933,
684
+ "rewards/format_reward": 0.0,
685
+ "step": 52
686
+ },
687
+ {
688
+ "completion_length": 590.315881729126,
689
+ "epoch": 0.7910447761194029,
690
+ "grad_norm": 0.09575485438108444,
691
+ "kl": 0.0036096572875976562,
692
+ "learning_rate": 3.852827617839085e-07,
693
+ "loss": 0.0001,
694
+ "reward": 0.776785746216774,
695
+ "reward_std": 0.20339447353035212,
696
+ "rewards/accuracy_reward": 0.776785746216774,
697
+ "rewards/format_reward": 0.0,
698
+ "step": 53
699
+ },
700
+ {
701
+ "completion_length": 571.912971496582,
702
+ "epoch": 0.8059701492537313,
703
+ "grad_norm": 0.07775302976369858,
704
+ "kl": 0.0041255950927734375,
705
+ "learning_rate": 3.3428105781454364e-07,
706
+ "loss": 0.0002,
707
+ "reward": 0.7544643320143223,
708
+ "reward_std": 0.14612831640988588,
709
+ "rewards/accuracy_reward": 0.7544643320143223,
710
+ "rewards/format_reward": 0.0,
711
+ "step": 54
712
+ },
713
+ {
714
+ "completion_length": 575.9989128112793,
715
+ "epoch": 0.8208955223880597,
716
+ "grad_norm": 0.13639913499355316,
717
+ "kl": 0.0060577392578125,
718
+ "learning_rate": 2.86474508437579e-07,
719
+ "loss": 0.0002,
720
+ "reward": 0.7745536118745804,
721
+ "reward_std": 0.1799168661236763,
722
+ "rewards/accuracy_reward": 0.7745536118745804,
723
+ "rewards/format_reward": 0.0,
724
+ "step": 55
725
+ },
726
+ {
727
+ "completion_length": 595.2321643829346,
728
+ "epoch": 0.835820895522388,
729
+ "grad_norm": 0.09935541450977325,
730
+ "kl": 0.0034551620483398438,
731
+ "learning_rate": 2.419941480818641e-07,
732
+ "loss": 0.0001,
733
+ "reward": 0.7566964663565159,
734
+ "reward_std": 0.1705572777427733,
735
+ "rewards/accuracy_reward": 0.7566964663565159,
736
+ "rewards/format_reward": 0.0,
737
+ "step": 56
738
+ },
739
+ {
740
+ "completion_length": 578.415205001831,
741
+ "epoch": 0.8507462686567164,
742
+ "grad_norm": 0.08712073415517807,
743
+ "kl": 0.0035562515258789062,
744
+ "learning_rate": 2.0096189432334195e-07,
745
+ "loss": 0.0001,
746
+ "reward": 0.7868303917348385,
747
+ "reward_std": 0.1490265424363315,
748
+ "rewards/accuracy_reward": 0.7868303917348385,
749
+ "rewards/format_reward": 0.0,
750
+ "step": 57
751
+ },
752
+ {
753
+ "completion_length": 570.0915451049805,
754
+ "epoch": 0.8656716417910447,
755
+ "grad_norm": 0.08893033117055893,
756
+ "kl": 0.003448486328125,
757
+ "learning_rate": 1.634902137174483e-07,
758
+ "loss": 0.0001,
759
+ "reward": 0.7868303954601288,
760
+ "reward_std": 0.13831894285976887,
761
+ "rewards/accuracy_reward": 0.7868303954601288,
762
+ "rewards/format_reward": 0.0,
763
+ "step": 58
764
+ },
765
+ {
766
+ "completion_length": 570.3884201049805,
767
+ "epoch": 0.8805970149253731,
768
+ "grad_norm": 0.0921068862080574,
769
+ "kl": 0.0033750534057617188,
770
+ "learning_rate": 1.2968181353609853e-07,
771
+ "loss": 0.0001,
772
+ "reward": 0.8102678991854191,
773
+ "reward_std": 0.15646472247317433,
774
+ "rewards/accuracy_reward": 0.8102678991854191,
775
+ "rewards/format_reward": 0.0,
776
+ "step": 59
777
+ },
778
+ {
779
+ "completion_length": 562.8716716766357,
780
+ "epoch": 0.8955223880597015,
781
+ "grad_norm": 0.06974907219409943,
782
+ "kl": 0.0035638809204101562,
783
+ "learning_rate": 9.962936025419756e-08,
784
+ "loss": 0.0001,
785
+ "reward": 0.7857143245637417,
786
+ "reward_std": 0.1675086230970919,
787
+ "rewards/accuracy_reward": 0.7857143245637417,
788
+ "rewards/format_reward": 0.0,
789
+ "step": 60
790
+ },
791
+ {
792
+ "completion_length": 584.5279273986816,
793
+ "epoch": 0.9104477611940298,
794
+ "grad_norm": 0.13824282586574554,
795
+ "kl": 0.003696441650390625,
796
+ "learning_rate": 7.341522555726971e-08,
797
+ "loss": 0.0001,
798
+ "reward": 0.7511161006987095,
799
+ "reward_std": 0.19415182201191783,
800
+ "rewards/accuracy_reward": 0.7511161006987095,
801
+ "rewards/format_reward": 0.0,
802
+ "step": 61
803
+ },
804
+ {
805
+ "completion_length": 549.1629695892334,
806
+ "epoch": 0.9253731343283582,
807
+ "grad_norm": 0.10054602473974228,
808
+ "kl": 0.004033088684082031,
809
+ "learning_rate": 5.11112605663977e-08,
810
+ "loss": 0.0002,
811
+ "reward": 0.8381696827709675,
812
+ "reward_std": 0.1603721366263926,
813
+ "rewards/accuracy_reward": 0.8381696827709675,
814
+ "rewards/format_reward": 0.0,
815
+ "step": 62
816
+ },
817
+ {
818
+ "completion_length": 593.0893096923828,
819
+ "epoch": 0.9402985074626866,
820
+ "grad_norm": 0.08826031535863876,
821
+ "kl": 0.0032329559326171875,
822
+ "learning_rate": 3.277859889929147e-08,
823
+ "loss": 0.0001,
824
+ "reward": 0.812500037252903,
825
+ "reward_std": 0.1807763264514506,
826
+ "rewards/accuracy_reward": 0.812500037252903,
827
+ "rewards/format_reward": 0.0,
828
+ "step": 63
829
+ },
830
+ {
831
+ "completion_length": 549.9207801818848,
832
+ "epoch": 0.9552238805970149,
833
+ "grad_norm": 0.0768972784280777,
834
+ "kl": 0.0036096572875976562,
835
+ "learning_rate": 1.846748910729351e-08,
836
+ "loss": 0.0001,
837
+ "reward": 0.8225446753203869,
838
+ "reward_std": 0.12298994930461049,
839
+ "rewards/accuracy_reward": 0.8225446753203869,
840
+ "rewards/format_reward": 0.0,
841
+ "step": 64
842
+ },
843
+ {
844
+ "completion_length": 544.910737991333,
845
+ "epoch": 0.9701492537313433,
846
+ "grad_norm": 0.07084512710571289,
847
+ "kl": 0.0035963058471679688,
848
+ "learning_rate": 8.217156947590065e-09,
849
+ "loss": 0.0001,
850
+ "reward": 0.8169643096625805,
851
+ "reward_std": 0.12426057457923889,
852
+ "rewards/accuracy_reward": 0.8169643096625805,
853
+ "rewards/format_reward": 0.0,
854
+ "step": 65
855
+ },
856
+ {
857
+ "completion_length": 587.8024768829346,
858
+ "epoch": 0.9850746268656716,
859
+ "grad_norm": 0.08717910200357437,
860
+ "kl": 0.003803253173828125,
861
+ "learning_rate": 2.0556978681392503e-09,
862
+ "loss": 0.0002,
863
+ "reward": 0.7444196753203869,
864
+ "reward_std": 0.17243521055206656,
865
+ "rewards/accuracy_reward": 0.7444196753203869,
866
+ "rewards/format_reward": 0.0,
867
+ "step": 66
868
+ },
869
+ {
870
+ "completion_length": 574.7916831970215,
871
+ "epoch": 1.0,
872
+ "grad_norm": 0.0701616182923317,
873
+ "kl": 0.0031533241271972656,
874
+ "learning_rate": 0.0,
875
+ "loss": 0.0001,
876
+ "reward": 0.7291666679084301,
877
+ "reward_std": 0.0578637570142746,
878
+ "rewards/accuracy_reward": 0.7291666679084301,
879
+ "rewards/format_reward": 0.0,
880
+ "step": 67
881
+ },
882
+ {
883
+ "epoch": 1.0,
884
+ "step": 67,
885
+ "total_flos": 0.0,
886
+ "train_loss": 0.00012216681254848273,
887
+ "train_runtime": 12383.6526,
888
+ "train_samples_per_second": 0.606,
889
+ "train_steps_per_second": 0.005
890
+ }
891
+ ],
892
+ "logging_steps": 1,
893
+ "max_steps": 67,
894
+ "num_input_tokens_seen": 0,
895
+ "num_train_epochs": 1,
896
+ "save_steps": 500,
897
+ "stateful_callbacks": {
898
+ "TrainerControl": {
899
+ "args": {
900
+ "should_epoch_stop": false,
901
+ "should_evaluate": false,
902
+ "should_log": false,
903
+ "should_save": false,
904
+ "should_training_stop": false
905
+ },
906
+ "attributes": {}
907
+ }
908
+ },
909
+ "total_flos": 0.0,
910
+ "train_batch_size": 1,
911
+ "trial_name": null,
912
+ "trial_params": null
913
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2838c5d1a0a848227c256434708f5637fd9dc377c9646ae5cdab5e045aa72f5d
3
+ size 7288
vocab.json ADDED
The diff for this file is too large to render. See raw diff