Model save
Browse files- .gitattributes +1 -0
- README.md +68 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- config.json +30 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- train_results.json +8 -0
- trainer_state.json +913 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-Math-7B
|
3 |
+
library_name: transformers
|
4 |
+
model_name: Qwen-2.5-7B_Base_Math_smalllr
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- grpo
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for Qwen-2.5-7B_Base_Math_smalllr
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="binglinchengxia/Qwen-2.5-7B_Base_Math_smalllr", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/kwai-intelligent/huggingface/runs/9okkyr7c)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.15.0.dev0
|
38 |
+
- Transformers: 4.49.0.dev0
|
39 |
+
- Pytorch: 2.5.1
|
40 |
+
- Datasets: 3.2.0
|
41 |
+
- Tokenizers: 0.21.0
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
Cite GRPO as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@article{zhihong2024deepseekmath,
|
49 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
50 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
51 |
+
year = 2024,
|
52 |
+
eprint = {arXiv:2402.03300},
|
53 |
+
}
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Cite TRL as:
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@misc{vonwerra2022trl,
|
61 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
62 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
63 |
+
year = 2020,
|
64 |
+
journal = {GitHub repository},
|
65 |
+
publisher = {GitHub},
|
66 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
67 |
+
}
|
68 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.00012216681254848273,
|
4 |
+
"train_runtime": 12383.6526,
|
5 |
+
"train_samples": 7500,
|
6 |
+
"train_samples_per_second": 0.606,
|
7 |
+
"train_steps_per_second": 0.005
|
8 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-Math-7B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 10000,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.49.0.dev0",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_mrope": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 152064
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.49.0.dev0"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f99af4b525d25f4718ba7ea4943d793c2a62d63e0360eb9ea93a7f493730cdbe
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:853c02ebd3e6091ae3e4dbb09b1cad80673da35965134aff9513c2ef91414a49
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77c512bc1a3f8e4d409071af0612572b1ae96c7ac71f51c4f67eae0e59ede2a0
|
3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec319a3739717e60e7b5c1ddf4516be8495cda9f42892af2b35d13d0c2bb1883
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
3 |
+
size 11422063
|
tokenizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"padding_side": "left",
|
206 |
+
"split_special_tokens": false,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"unk_token": null
|
209 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.00012216681254848273,
|
4 |
+
"train_runtime": 12383.6526,
|
5 |
+
"train_samples": 7500,
|
6 |
+
"train_samples_per_second": 0.606,
|
7 |
+
"train_steps_per_second": 0.005
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,913 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 67,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"completion_length": 588.9654293060303,
|
13 |
+
"epoch": 0.014925373134328358,
|
14 |
+
"grad_norm": 2.6534500122070312,
|
15 |
+
"kl": 0.0,
|
16 |
+
"learning_rate": 4.2857142857142857e-07,
|
17 |
+
"loss": 0.0,
|
18 |
+
"reward": 0.6618303954601288,
|
19 |
+
"reward_std": 0.3340754471719265,
|
20 |
+
"rewards/accuracy_reward": 0.6618303954601288,
|
21 |
+
"rewards/format_reward": 0.0,
|
22 |
+
"step": 1
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"completion_length": 574.2835121154785,
|
26 |
+
"epoch": 0.029850746268656716,
|
27 |
+
"grad_norm": 1.5236740112304688,
|
28 |
+
"kl": 0.0,
|
29 |
+
"learning_rate": 8.571428571428571e-07,
|
30 |
+
"loss": 0.0,
|
31 |
+
"reward": 0.6640625298023224,
|
32 |
+
"reward_std": 0.35328569635748863,
|
33 |
+
"rewards/accuracy_reward": 0.6640625298023224,
|
34 |
+
"rewards/format_reward": 0.0,
|
35 |
+
"step": 2
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"completion_length": 603.0803833007812,
|
39 |
+
"epoch": 0.04477611940298507,
|
40 |
+
"grad_norm": 1.810470461845398,
|
41 |
+
"kl": 0.00018996000289916992,
|
42 |
+
"learning_rate": 1.2857142857142856e-06,
|
43 |
+
"loss": 0.0,
|
44 |
+
"reward": 0.6685268227010965,
|
45 |
+
"reward_std": 0.3423070926219225,
|
46 |
+
"rewards/accuracy_reward": 0.6685268227010965,
|
47 |
+
"rewards/format_reward": 0.0,
|
48 |
+
"step": 3
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"completion_length": 662.1841831207275,
|
52 |
+
"epoch": 0.05970149253731343,
|
53 |
+
"grad_norm": 2.944155693054199,
|
54 |
+
"kl": 0.00020492076873779297,
|
55 |
+
"learning_rate": 1.7142857142857143e-06,
|
56 |
+
"loss": 0.0,
|
57 |
+
"reward": 0.6506696715950966,
|
58 |
+
"reward_std": 0.3272070288658142,
|
59 |
+
"rewards/accuracy_reward": 0.6506696715950966,
|
60 |
+
"rewards/format_reward": 0.0,
|
61 |
+
"step": 4
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"completion_length": 611.7890968322754,
|
65 |
+
"epoch": 0.07462686567164178,
|
66 |
+
"grad_norm": 0.5025805234909058,
|
67 |
+
"kl": 0.00025087594985961914,
|
68 |
+
"learning_rate": 2.142857142857143e-06,
|
69 |
+
"loss": 0.0,
|
70 |
+
"reward": 0.6216518208384514,
|
71 |
+
"reward_std": 0.2848156485706568,
|
72 |
+
"rewards/accuracy_reward": 0.6216518208384514,
|
73 |
+
"rewards/format_reward": 0.0,
|
74 |
+
"step": 5
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"completion_length": 606.5625228881836,
|
78 |
+
"epoch": 0.08955223880597014,
|
79 |
+
"grad_norm": 1.21269953250885,
|
80 |
+
"kl": 0.0005187392234802246,
|
81 |
+
"learning_rate": 2.571428571428571e-06,
|
82 |
+
"loss": 0.0,
|
83 |
+
"reward": 0.683035746216774,
|
84 |
+
"reward_std": 0.3044421002268791,
|
85 |
+
"rewards/accuracy_reward": 0.683035746216774,
|
86 |
+
"rewards/format_reward": 0.0,
|
87 |
+
"step": 6
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"completion_length": 600.8437728881836,
|
91 |
+
"epoch": 0.1044776119402985,
|
92 |
+
"grad_norm": 0.5010935664176941,
|
93 |
+
"kl": 0.0006451606750488281,
|
94 |
+
"learning_rate": 3e-06,
|
95 |
+
"loss": 0.0,
|
96 |
+
"reward": 0.7120536044239998,
|
97 |
+
"reward_std": 0.27275579422712326,
|
98 |
+
"rewards/accuracy_reward": 0.7120536044239998,
|
99 |
+
"rewards/format_reward": 0.0,
|
100 |
+
"step": 7
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"completion_length": 604.5390853881836,
|
104 |
+
"epoch": 0.11940298507462686,
|
105 |
+
"grad_norm": 1.0228732824325562,
|
106 |
+
"kl": 0.0014821290969848633,
|
107 |
+
"learning_rate": 2.9979443021318607e-06,
|
108 |
+
"loss": 0.0001,
|
109 |
+
"reward": 0.7533482499420643,
|
110 |
+
"reward_std": 0.26047475449740887,
|
111 |
+
"rewards/accuracy_reward": 0.7533482499420643,
|
112 |
+
"rewards/format_reward": 0.0,
|
113 |
+
"step": 8
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"completion_length": 628.8348484039307,
|
117 |
+
"epoch": 0.13432835820895522,
|
118 |
+
"grad_norm": 0.6632704734802246,
|
119 |
+
"kl": 0.0016405582427978516,
|
120 |
+
"learning_rate": 2.99178284305241e-06,
|
121 |
+
"loss": 0.0001,
|
122 |
+
"reward": 0.6897321715950966,
|
123 |
+
"reward_std": 0.2548013962805271,
|
124 |
+
"rewards/accuracy_reward": 0.6897321715950966,
|
125 |
+
"rewards/format_reward": 0.0,
|
126 |
+
"step": 9
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"completion_length": 626.3750247955322,
|
130 |
+
"epoch": 0.14925373134328357,
|
131 |
+
"grad_norm": 1.5124034881591797,
|
132 |
+
"kl": 0.0020029544830322266,
|
133 |
+
"learning_rate": 2.981532510892707e-06,
|
134 |
+
"loss": 0.0001,
|
135 |
+
"reward": 0.7689732499420643,
|
136 |
+
"reward_std": 0.2507007820531726,
|
137 |
+
"rewards/accuracy_reward": 0.7689732499420643,
|
138 |
+
"rewards/format_reward": 0.0,
|
139 |
+
"step": 10
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"completion_length": 653.0457916259766,
|
143 |
+
"epoch": 0.16417910447761194,
|
144 |
+
"grad_norm": 0.3473568558692932,
|
145 |
+
"kl": 0.0020618438720703125,
|
146 |
+
"learning_rate": 2.9672214011007086e-06,
|
147 |
+
"loss": 0.0001,
|
148 |
+
"reward": 0.7109375335276127,
|
149 |
+
"reward_std": 0.24070814065635204,
|
150 |
+
"rewards/accuracy_reward": 0.7109375335276127,
|
151 |
+
"rewards/format_reward": 0.0,
|
152 |
+
"step": 11
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"completion_length": 624.7511444091797,
|
156 |
+
"epoch": 0.1791044776119403,
|
157 |
+
"grad_norm": 4.333103656768799,
|
158 |
+
"kl": 0.006229400634765625,
|
159 |
+
"learning_rate": 2.9488887394336023e-06,
|
160 |
+
"loss": 0.0002,
|
161 |
+
"reward": 0.6964286062866449,
|
162 |
+
"reward_std": 0.25179733615368605,
|
163 |
+
"rewards/accuracy_reward": 0.6964286062866449,
|
164 |
+
"rewards/format_reward": 0.0,
|
165 |
+
"step": 12
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"completion_length": 638.3526973724365,
|
169 |
+
"epoch": 0.19402985074626866,
|
170 |
+
"grad_norm": 0.12630324065685272,
|
171 |
+
"kl": 0.0025043487548828125,
|
172 |
+
"learning_rate": 2.9265847744427307e-06,
|
173 |
+
"loss": 0.0001,
|
174 |
+
"reward": 0.7578125335276127,
|
175 |
+
"reward_std": 0.2057263469323516,
|
176 |
+
"rewards/accuracy_reward": 0.7578125335276127,
|
177 |
+
"rewards/format_reward": 0.0,
|
178 |
+
"step": 13
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"completion_length": 594.9152069091797,
|
182 |
+
"epoch": 0.208955223880597,
|
183 |
+
"grad_norm": 0.1356700211763382,
|
184 |
+
"kl": 0.002197265625,
|
185 |
+
"learning_rate": 2.9003706397458025e-06,
|
186 |
+
"loss": 0.0001,
|
187 |
+
"reward": 0.7857143208384514,
|
188 |
+
"reward_std": 0.16860559629276395,
|
189 |
+
"rewards/accuracy_reward": 0.7857143208384514,
|
190 |
+
"rewards/format_reward": 0.0,
|
191 |
+
"step": 14
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"completion_length": 577.4933338165283,
|
195 |
+
"epoch": 0.22388059701492538,
|
196 |
+
"grad_norm": 0.12567110359668732,
|
197 |
+
"kl": 0.0028967857360839844,
|
198 |
+
"learning_rate": 2.8703181864639013e-06,
|
199 |
+
"loss": 0.0001,
|
200 |
+
"reward": 0.820312537252903,
|
201 |
+
"reward_std": 0.17374721262603998,
|
202 |
+
"rewards/accuracy_reward": 0.820312537252903,
|
203 |
+
"rewards/format_reward": 0.0,
|
204 |
+
"step": 15
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"completion_length": 593.5212230682373,
|
208 |
+
"epoch": 0.23880597014925373,
|
209 |
+
"grad_norm": 0.1694745570421219,
|
210 |
+
"kl": 0.0028734207153320312,
|
211 |
+
"learning_rate": 2.8365097862825516e-06,
|
212 |
+
"loss": 0.0001,
|
213 |
+
"reward": 0.7645089589059353,
|
214 |
+
"reward_std": 0.2047506500966847,
|
215 |
+
"rewards/accuracy_reward": 0.7645089589059353,
|
216 |
+
"rewards/format_reward": 0.0,
|
217 |
+
"step": 16
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"completion_length": 585.3772563934326,
|
221 |
+
"epoch": 0.2537313432835821,
|
222 |
+
"grad_norm": 0.23806491494178772,
|
223 |
+
"kl": 0.0028820037841796875,
|
224 |
+
"learning_rate": 2.7990381056766585e-06,
|
225 |
+
"loss": 0.0001,
|
226 |
+
"reward": 0.7645089663565159,
|
227 |
+
"reward_std": 0.2365775415673852,
|
228 |
+
"rewards/accuracy_reward": 0.7645089663565159,
|
229 |
+
"rewards/format_reward": 0.0,
|
230 |
+
"step": 17
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"completion_length": 589.7611808776855,
|
234 |
+
"epoch": 0.26865671641791045,
|
235 |
+
"grad_norm": 0.15571320056915283,
|
236 |
+
"kl": 0.002490997314453125,
|
237 |
+
"learning_rate": 2.758005851918136e-06,
|
238 |
+
"loss": 0.0001,
|
239 |
+
"reward": 0.7544643264263868,
|
240 |
+
"reward_std": 0.21331929927691817,
|
241 |
+
"rewards/accuracy_reward": 0.7544643264263868,
|
242 |
+
"rewards/format_reward": 0.0,
|
243 |
+
"step": 18
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"completion_length": 603.9732398986816,
|
247 |
+
"epoch": 0.2835820895522388,
|
248 |
+
"grad_norm": 0.20735572278499603,
|
249 |
+
"kl": 0.0032434463500976562,
|
250 |
+
"learning_rate": 2.713525491562421e-06,
|
251 |
+
"loss": 0.0001,
|
252 |
+
"reward": 0.7667411062866449,
|
253 |
+
"reward_std": 0.17671918543055654,
|
254 |
+
"rewards/accuracy_reward": 0.7667411062866449,
|
255 |
+
"rewards/format_reward": 0.0,
|
256 |
+
"step": 19
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"completion_length": 608.0290489196777,
|
260 |
+
"epoch": 0.29850746268656714,
|
261 |
+
"grad_norm": 0.3643544912338257,
|
262 |
+
"kl": 0.0036559104919433594,
|
263 |
+
"learning_rate": 2.6657189421854562e-06,
|
264 |
+
"loss": 0.0001,
|
265 |
+
"reward": 0.7645089607685804,
|
266 |
+
"reward_std": 0.16924317786470056,
|
267 |
+
"rewards/accuracy_reward": 0.7645089607685804,
|
268 |
+
"rewards/format_reward": 0.0,
|
269 |
+
"step": 20
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"completion_length": 604.2723560333252,
|
273 |
+
"epoch": 0.31343283582089554,
|
274 |
+
"grad_norm": 0.22008363902568817,
|
275 |
+
"kl": 0.0029211044311523438,
|
276 |
+
"learning_rate": 2.6147172382160914e-06,
|
277 |
+
"loss": 0.0001,
|
278 |
+
"reward": 0.7466518208384514,
|
279 |
+
"reward_std": 0.14925407292321324,
|
280 |
+
"rewards/accuracy_reward": 0.7466518208384514,
|
281 |
+
"rewards/format_reward": 0.0,
|
282 |
+
"step": 21
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"completion_length": 604.7009181976318,
|
286 |
+
"epoch": 0.3283582089552239,
|
287 |
+
"grad_norm": 0.5150439739227295,
|
288 |
+
"kl": 0.0036449432373046875,
|
289 |
+
"learning_rate": 2.5606601717798212e-06,
|
290 |
+
"loss": 0.0001,
|
291 |
+
"reward": 0.7466518171131611,
|
292 |
+
"reward_std": 0.20275325747206807,
|
293 |
+
"rewards/accuracy_reward": 0.7466518171131611,
|
294 |
+
"rewards/format_reward": 0.0,
|
295 |
+
"step": 22
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"completion_length": 539.8783779144287,
|
299 |
+
"epoch": 0.34328358208955223,
|
300 |
+
"grad_norm": 0.08835027366876602,
|
301 |
+
"kl": 0.0028405189514160156,
|
302 |
+
"learning_rate": 2.5036959095382875e-06,
|
303 |
+
"loss": 0.0001,
|
304 |
+
"reward": 0.8080357424914837,
|
305 |
+
"reward_std": 0.151585946790874,
|
306 |
+
"rewards/accuracy_reward": 0.8080357424914837,
|
307 |
+
"rewards/format_reward": 0.0,
|
308 |
+
"step": 23
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"completion_length": 617.0491275787354,
|
312 |
+
"epoch": 0.3582089552238806,
|
313 |
+
"grad_norm": 0.11819685250520706,
|
314 |
+
"kl": 0.0034465789794921875,
|
315 |
+
"learning_rate": 2.4439805865747562e-06,
|
316 |
+
"loss": 0.0001,
|
317 |
+
"reward": 0.7209821790456772,
|
318 |
+
"reward_std": 0.20670274924486876,
|
319 |
+
"rewards/accuracy_reward": 0.7209821790456772,
|
320 |
+
"rewards/format_reward": 0.0,
|
321 |
+
"step": 24
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"completion_length": 561.9810562133789,
|
325 |
+
"epoch": 0.373134328358209,
|
326 |
+
"grad_norm": 0.1162777692079544,
|
327 |
+
"kl": 0.0033864974975585938,
|
328 |
+
"learning_rate": 2.3816778784387097e-06,
|
329 |
+
"loss": 0.0001,
|
330 |
+
"reward": 0.8359375335276127,
|
331 |
+
"reward_std": 0.12302456051111221,
|
332 |
+
"rewards/accuracy_reward": 0.8359375335276127,
|
333 |
+
"rewards/format_reward": 0.0,
|
334 |
+
"step": 25
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"completion_length": 603.2611846923828,
|
338 |
+
"epoch": 0.3880597014925373,
|
339 |
+
"grad_norm": 0.11348129063844681,
|
340 |
+
"kl": 0.003231048583984375,
|
341 |
+
"learning_rate": 2.316958552522541e-06,
|
342 |
+
"loss": 0.0001,
|
343 |
+
"reward": 0.7555803954601288,
|
344 |
+
"reward_std": 0.19700363464653492,
|
345 |
+
"rewards/accuracy_reward": 0.7555803954601288,
|
346 |
+
"rewards/format_reward": 0.0,
|
347 |
+
"step": 26
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"completion_length": 576.3515892028809,
|
351 |
+
"epoch": 0.40298507462686567,
|
352 |
+
"grad_norm": 0.10333164781332016,
|
353 |
+
"kl": 0.003551483154296875,
|
354 |
+
"learning_rate": 2.25e-06,
|
355 |
+
"loss": 0.0001,
|
356 |
+
"reward": 0.7332589626312256,
|
357 |
+
"reward_std": 0.16596951289102435,
|
358 |
+
"rewards/accuracy_reward": 0.7332589626312256,
|
359 |
+
"rewards/format_reward": 0.0,
|
360 |
+
"step": 27
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"completion_length": 576.9352893829346,
|
364 |
+
"epoch": 0.417910447761194,
|
365 |
+
"grad_norm": 0.08400996029376984,
|
366 |
+
"kl": 0.003052234649658203,
|
367 |
+
"learning_rate": 2.18098574960932e-06,
|
368 |
+
"loss": 0.0001,
|
369 |
+
"reward": 0.7656250335276127,
|
370 |
+
"reward_std": 0.16529620438814163,
|
371 |
+
"rewards/accuracy_reward": 0.7656250335276127,
|
372 |
+
"rewards/format_reward": 0.0,
|
373 |
+
"step": 28
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"completion_length": 572.9832820892334,
|
377 |
+
"epoch": 0.43283582089552236,
|
378 |
+
"grad_norm": 0.09134360402822495,
|
379 |
+
"kl": 0.0033164024353027344,
|
380 |
+
"learning_rate": 2.1101049646137005e-06,
|
381 |
+
"loss": 0.0001,
|
382 |
+
"reward": 0.7243303973227739,
|
383 |
+
"reward_std": 0.18314252886921167,
|
384 |
+
"rewards/accuracy_reward": 0.7243303973227739,
|
385 |
+
"rewards/format_reward": 0.0,
|
386 |
+
"step": 29
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"completion_length": 598.8917636871338,
|
390 |
+
"epoch": 0.44776119402985076,
|
391 |
+
"grad_norm": 0.0819033682346344,
|
392 |
+
"kl": 0.003021240234375,
|
393 |
+
"learning_rate": 2.03755192431795e-06,
|
394 |
+
"loss": 0.0001,
|
395 |
+
"reward": 0.772321455180645,
|
396 |
+
"reward_std": 0.20655824523419142,
|
397 |
+
"rewards/accuracy_reward": 0.772321455180645,
|
398 |
+
"rewards/format_reward": 0.0,
|
399 |
+
"step": 30
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"completion_length": 568.7176551818848,
|
403 |
+
"epoch": 0.4626865671641791,
|
404 |
+
"grad_norm": 0.1345580369234085,
|
405 |
+
"kl": 0.004252433776855469,
|
406 |
+
"learning_rate": 1.963525491562421e-06,
|
407 |
+
"loss": 0.0002,
|
408 |
+
"reward": 0.7767857536673546,
|
409 |
+
"reward_std": 0.18306655017659068,
|
410 |
+
"rewards/accuracy_reward": 0.7767857536673546,
|
411 |
+
"rewards/format_reward": 0.0,
|
412 |
+
"step": 31
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"completion_length": 579.5647583007812,
|
416 |
+
"epoch": 0.47761194029850745,
|
417 |
+
"grad_norm": 0.08470705151557922,
|
418 |
+
"kl": 0.0035343170166015625,
|
419 |
+
"learning_rate": 1.888228567653781e-06,
|
420 |
+
"loss": 0.0001,
|
421 |
+
"reward": 0.7957589663565159,
|
422 |
+
"reward_std": 0.17081871908158064,
|
423 |
+
"rewards/accuracy_reward": 0.7957589663565159,
|
424 |
+
"rewards/format_reward": 0.0,
|
425 |
+
"step": 32
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"completion_length": 609.633955001831,
|
429 |
+
"epoch": 0.4925373134328358,
|
430 |
+
"grad_norm": 0.07784049212932587,
|
431 |
+
"kl": 0.0028290748596191406,
|
432 |
+
"learning_rate": 1.8118675362266389e-06,
|
433 |
+
"loss": 0.0001,
|
434 |
+
"reward": 0.7578125335276127,
|
435 |
+
"reward_std": 0.1949409432709217,
|
436 |
+
"rewards/accuracy_reward": 0.7578125335276127,
|
437 |
+
"rewards/format_reward": 0.0,
|
438 |
+
"step": 33
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"completion_length": 622.8817157745361,
|
442 |
+
"epoch": 0.5074626865671642,
|
443 |
+
"grad_norm": 0.08559560030698776,
|
444 |
+
"kl": 0.0029349327087402344,
|
445 |
+
"learning_rate": 1.7346516975603465e-06,
|
446 |
+
"loss": 0.0001,
|
447 |
+
"reward": 0.7488839663565159,
|
448 |
+
"reward_std": 0.19219930842518806,
|
449 |
+
"rewards/accuracy_reward": 0.7488839663565159,
|
450 |
+
"rewards/format_reward": 0.0,
|
451 |
+
"step": 34
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"completion_length": 612.6897583007812,
|
455 |
+
"epoch": 0.5223880597014925,
|
456 |
+
"grad_norm": 0.07799447327852249,
|
457 |
+
"kl": 0.002971649169921875,
|
458 |
+
"learning_rate": 1.6567926949014804e-06,
|
459 |
+
"loss": 0.0001,
|
460 |
+
"reward": 0.7533482573926449,
|
461 |
+
"reward_std": 0.1705156215466559,
|
462 |
+
"rewards/accuracy_reward": 0.7533482573926449,
|
463 |
+
"rewards/format_reward": 0.0,
|
464 |
+
"step": 35
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"completion_length": 575.945333480835,
|
468 |
+
"epoch": 0.5373134328358209,
|
469 |
+
"grad_norm": 0.11088297516107559,
|
470 |
+
"kl": 0.00347900390625,
|
471 |
+
"learning_rate": 1.578503934364416e-06,
|
472 |
+
"loss": 0.0001,
|
473 |
+
"reward": 0.753348246216774,
|
474 |
+
"reward_std": 0.18251199880614877,
|
475 |
+
"rewards/accuracy_reward": 0.753348246216774,
|
476 |
+
"rewards/format_reward": 0.0,
|
477 |
+
"step": 36
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"completion_length": 575.522346496582,
|
481 |
+
"epoch": 0.5522388059701493,
|
482 |
+
"grad_norm": 0.07977250218391418,
|
483 |
+
"kl": 0.003589630126953125,
|
484 |
+
"learning_rate": 1.5e-06,
|
485 |
+
"loss": 0.0001,
|
486 |
+
"reward": 0.768973246216774,
|
487 |
+
"reward_std": 0.172359649091959,
|
488 |
+
"rewards/accuracy_reward": 0.768973246216774,
|
489 |
+
"rewards/format_reward": 0.0,
|
490 |
+
"step": 37
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"completion_length": 574.8672142028809,
|
494 |
+
"epoch": 0.5671641791044776,
|
495 |
+
"grad_norm": 0.07976463437080383,
|
496 |
+
"kl": 0.0032825469970703125,
|
497 |
+
"learning_rate": 1.4214960656355842e-06,
|
498 |
+
"loss": 0.0001,
|
499 |
+
"reward": 0.8125000409781933,
|
500 |
+
"reward_std": 0.12335904035717249,
|
501 |
+
"rewards/accuracy_reward": 0.8125000409781933,
|
502 |
+
"rewards/format_reward": 0.0,
|
503 |
+
"step": 38
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"completion_length": 568.9866352081299,
|
507 |
+
"epoch": 0.582089552238806,
|
508 |
+
"grad_norm": 0.11306460946798325,
|
509 |
+
"kl": 0.004673480987548828,
|
510 |
+
"learning_rate": 1.3432073050985201e-06,
|
511 |
+
"loss": 0.0002,
|
512 |
+
"reward": 0.7723214589059353,
|
513 |
+
"reward_std": 0.15484962752088904,
|
514 |
+
"rewards/accuracy_reward": 0.7723214589059353,
|
515 |
+
"rewards/format_reward": 0.0,
|
516 |
+
"step": 39
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"completion_length": 607.1752510070801,
|
520 |
+
"epoch": 0.5970149253731343,
|
521 |
+
"grad_norm": 0.1425676792860031,
|
522 |
+
"kl": 0.0033125877380371094,
|
523 |
+
"learning_rate": 1.2653483024396534e-06,
|
524 |
+
"loss": 0.0001,
|
525 |
+
"reward": 0.772321455180645,
|
526 |
+
"reward_std": 0.17449467908591032,
|
527 |
+
"rewards/accuracy_reward": 0.772321455180645,
|
528 |
+
"rewards/format_reward": 0.0,
|
529 |
+
"step": 40
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"completion_length": 534.8303833007812,
|
533 |
+
"epoch": 0.6119402985074627,
|
534 |
+
"grad_norm": 0.0919041708111763,
|
535 |
+
"kl": 0.004061698913574219,
|
536 |
+
"learning_rate": 1.1881324637733612e-06,
|
537 |
+
"loss": 0.0002,
|
538 |
+
"reward": 0.7745536006987095,
|
539 |
+
"reward_std": 0.16172579256817698,
|
540 |
+
"rewards/accuracy_reward": 0.7745536006987095,
|
541 |
+
"rewards/format_reward": 0.0,
|
542 |
+
"step": 41
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"completion_length": 560.0078372955322,
|
546 |
+
"epoch": 0.6268656716417911,
|
547 |
+
"grad_norm": 0.0930609181523323,
|
548 |
+
"kl": 0.0036792755126953125,
|
549 |
+
"learning_rate": 1.1117714323462188e-06,
|
550 |
+
"loss": 0.0001,
|
551 |
+
"reward": 0.8158482536673546,
|
552 |
+
"reward_std": 0.170708823017776,
|
553 |
+
"rewards/accuracy_reward": 0.8158482536673546,
|
554 |
+
"rewards/format_reward": 0.0,
|
555 |
+
"step": 42
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"completion_length": 601.4565029144287,
|
559 |
+
"epoch": 0.6417910447761194,
|
560 |
+
"grad_norm": 0.08595103770494461,
|
561 |
+
"kl": 0.0032434463500976562,
|
562 |
+
"learning_rate": 1.036474508437579e-06,
|
563 |
+
"loss": 0.0001,
|
564 |
+
"reward": 0.7522321753203869,
|
565 |
+
"reward_std": 0.16597021045163274,
|
566 |
+
"rewards/accuracy_reward": 0.7522321753203869,
|
567 |
+
"rewards/format_reward": 0.0,
|
568 |
+
"step": 43
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"completion_length": 553.7667694091797,
|
572 |
+
"epoch": 0.6567164179104478,
|
573 |
+
"grad_norm": 0.09559870511293411,
|
574 |
+
"kl": 0.004054069519042969,
|
575 |
+
"learning_rate": 9.624480756820497e-07,
|
576 |
+
"loss": 0.0002,
|
577 |
+
"reward": 0.7767857499420643,
|
578 |
+
"reward_std": 0.14699635887518525,
|
579 |
+
"rewards/accuracy_reward": 0.7767857499420643,
|
580 |
+
"rewards/format_reward": 0.0,
|
581 |
+
"step": 44
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"completion_length": 572.5535984039307,
|
585 |
+
"epoch": 0.6716417910447762,
|
586 |
+
"grad_norm": 0.07558111101388931,
|
587 |
+
"kl": 0.0035276412963867188,
|
588 |
+
"learning_rate": 8.898950353863e-07,
|
589 |
+
"loss": 0.0001,
|
590 |
+
"reward": 0.7901786155998707,
|
591 |
+
"reward_std": 0.15063981525599957,
|
592 |
+
"rewards/accuracy_reward": 0.7901786155998707,
|
593 |
+
"rewards/format_reward": 0.0,
|
594 |
+
"step": 45
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"completion_length": 627.7455635070801,
|
598 |
+
"epoch": 0.6865671641791045,
|
599 |
+
"grad_norm": 0.08073041588068008,
|
600 |
+
"kl": 0.0030755996704101562,
|
601 |
+
"learning_rate": 8.190142503906799e-07,
|
602 |
+
"loss": 0.0001,
|
603 |
+
"reward": 0.7421875447034836,
|
604 |
+
"reward_std": 0.19877350237220526,
|
605 |
+
"rewards/accuracy_reward": 0.7421875447034836,
|
606 |
+
"rewards/format_reward": 0.0,
|
607 |
+
"step": 46
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"completion_length": 561.7902069091797,
|
611 |
+
"epoch": 0.7014925373134329,
|
612 |
+
"grad_norm": 0.08770101517438889,
|
613 |
+
"kl": 0.0040454864501953125,
|
614 |
+
"learning_rate": 7.500000000000003e-07,
|
615 |
+
"loss": 0.0002,
|
616 |
+
"reward": 0.812500037252903,
|
617 |
+
"reward_std": 0.18986603012308478,
|
618 |
+
"rewards/accuracy_reward": 0.812500037252903,
|
619 |
+
"rewards/format_reward": 0.0,
|
620 |
+
"step": 47
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"completion_length": 582.2556076049805,
|
624 |
+
"epoch": 0.7164179104477612,
|
625 |
+
"grad_norm": 0.08533724397420883,
|
626 |
+
"kl": 0.0029554367065429688,
|
627 |
+
"learning_rate": 6.830414474774594e-07,
|
628 |
+
"loss": 0.0001,
|
629 |
+
"reward": 0.8058036006987095,
|
630 |
+
"reward_std": 0.1576297921128571,
|
631 |
+
"rewards/accuracy_reward": 0.8058036006987095,
|
632 |
+
"rewards/format_reward": 0.0,
|
633 |
+
"step": 48
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"completion_length": 613.2410888671875,
|
637 |
+
"epoch": 0.7313432835820896,
|
638 |
+
"grad_norm": 0.08394148200750351,
|
639 |
+
"kl": 0.0036144256591796875,
|
640 |
+
"learning_rate": 6.183221215612905e-07,
|
641 |
+
"loss": 0.0001,
|
642 |
+
"reward": 0.7667411081492901,
|
643 |
+
"reward_std": 0.20444503612816334,
|
644 |
+
"rewards/accuracy_reward": 0.7667411081492901,
|
645 |
+
"rewards/format_reward": 0.0,
|
646 |
+
"step": 49
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"completion_length": 596.3806076049805,
|
650 |
+
"epoch": 0.746268656716418,
|
651 |
+
"grad_norm": 0.09445685148239136,
|
652 |
+
"kl": 0.0038156509399414062,
|
653 |
+
"learning_rate": 5.560194134252441e-07,
|
654 |
+
"loss": 0.0002,
|
655 |
+
"reward": 0.7154018096625805,
|
656 |
+
"reward_std": 0.16886480245739222,
|
657 |
+
"rewards/accuracy_reward": 0.7154018096625805,
|
658 |
+
"rewards/format_reward": 0.0,
|
659 |
+
"step": 50
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"completion_length": 588.2489070892334,
|
663 |
+
"epoch": 0.7611940298507462,
|
664 |
+
"grad_norm": 0.1409761756658554,
|
665 |
+
"kl": 0.0034036636352539062,
|
666 |
+
"learning_rate": 4.963040904617131e-07,
|
667 |
+
"loss": 0.0001,
|
668 |
+
"reward": 0.7779018171131611,
|
669 |
+
"reward_std": 0.15530426986515522,
|
670 |
+
"rewards/accuracy_reward": 0.7779018171131611,
|
671 |
+
"rewards/format_reward": 0.0,
|
672 |
+
"step": 51
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"completion_length": 582.168550491333,
|
676 |
+
"epoch": 0.7761194029850746,
|
677 |
+
"grad_norm": 0.08169642090797424,
|
678 |
+
"kl": 0.0034346580505371094,
|
679 |
+
"learning_rate": 4.3933982822017883e-07,
|
680 |
+
"loss": 0.0001,
|
681 |
+
"reward": 0.7421875409781933,
|
682 |
+
"reward_std": 0.17119849054142833,
|
683 |
+
"rewards/accuracy_reward": 0.7421875409781933,
|
684 |
+
"rewards/format_reward": 0.0,
|
685 |
+
"step": 52
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"completion_length": 590.315881729126,
|
689 |
+
"epoch": 0.7910447761194029,
|
690 |
+
"grad_norm": 0.09575485438108444,
|
691 |
+
"kl": 0.0036096572875976562,
|
692 |
+
"learning_rate": 3.852827617839085e-07,
|
693 |
+
"loss": 0.0001,
|
694 |
+
"reward": 0.776785746216774,
|
695 |
+
"reward_std": 0.20339447353035212,
|
696 |
+
"rewards/accuracy_reward": 0.776785746216774,
|
697 |
+
"rewards/format_reward": 0.0,
|
698 |
+
"step": 53
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"completion_length": 571.912971496582,
|
702 |
+
"epoch": 0.8059701492537313,
|
703 |
+
"grad_norm": 0.07775302976369858,
|
704 |
+
"kl": 0.0041255950927734375,
|
705 |
+
"learning_rate": 3.3428105781454364e-07,
|
706 |
+
"loss": 0.0002,
|
707 |
+
"reward": 0.7544643320143223,
|
708 |
+
"reward_std": 0.14612831640988588,
|
709 |
+
"rewards/accuracy_reward": 0.7544643320143223,
|
710 |
+
"rewards/format_reward": 0.0,
|
711 |
+
"step": 54
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"completion_length": 575.9989128112793,
|
715 |
+
"epoch": 0.8208955223880597,
|
716 |
+
"grad_norm": 0.13639913499355316,
|
717 |
+
"kl": 0.0060577392578125,
|
718 |
+
"learning_rate": 2.86474508437579e-07,
|
719 |
+
"loss": 0.0002,
|
720 |
+
"reward": 0.7745536118745804,
|
721 |
+
"reward_std": 0.1799168661236763,
|
722 |
+
"rewards/accuracy_reward": 0.7745536118745804,
|
723 |
+
"rewards/format_reward": 0.0,
|
724 |
+
"step": 55
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"completion_length": 595.2321643829346,
|
728 |
+
"epoch": 0.835820895522388,
|
729 |
+
"grad_norm": 0.09935541450977325,
|
730 |
+
"kl": 0.0034551620483398438,
|
731 |
+
"learning_rate": 2.419941480818641e-07,
|
732 |
+
"loss": 0.0001,
|
733 |
+
"reward": 0.7566964663565159,
|
734 |
+
"reward_std": 0.1705572777427733,
|
735 |
+
"rewards/accuracy_reward": 0.7566964663565159,
|
736 |
+
"rewards/format_reward": 0.0,
|
737 |
+
"step": 56
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"completion_length": 578.415205001831,
|
741 |
+
"epoch": 0.8507462686567164,
|
742 |
+
"grad_norm": 0.08712073415517807,
|
743 |
+
"kl": 0.0035562515258789062,
|
744 |
+
"learning_rate": 2.0096189432334195e-07,
|
745 |
+
"loss": 0.0001,
|
746 |
+
"reward": 0.7868303917348385,
|
747 |
+
"reward_std": 0.1490265424363315,
|
748 |
+
"rewards/accuracy_reward": 0.7868303917348385,
|
749 |
+
"rewards/format_reward": 0.0,
|
750 |
+
"step": 57
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"completion_length": 570.0915451049805,
|
754 |
+
"epoch": 0.8656716417910447,
|
755 |
+
"grad_norm": 0.08893033117055893,
|
756 |
+
"kl": 0.003448486328125,
|
757 |
+
"learning_rate": 1.634902137174483e-07,
|
758 |
+
"loss": 0.0001,
|
759 |
+
"reward": 0.7868303954601288,
|
760 |
+
"reward_std": 0.13831894285976887,
|
761 |
+
"rewards/accuracy_reward": 0.7868303954601288,
|
762 |
+
"rewards/format_reward": 0.0,
|
763 |
+
"step": 58
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"completion_length": 570.3884201049805,
|
767 |
+
"epoch": 0.8805970149253731,
|
768 |
+
"grad_norm": 0.0921068862080574,
|
769 |
+
"kl": 0.0033750534057617188,
|
770 |
+
"learning_rate": 1.2968181353609853e-07,
|
771 |
+
"loss": 0.0001,
|
772 |
+
"reward": 0.8102678991854191,
|
773 |
+
"reward_std": 0.15646472247317433,
|
774 |
+
"rewards/accuracy_reward": 0.8102678991854191,
|
775 |
+
"rewards/format_reward": 0.0,
|
776 |
+
"step": 59
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"completion_length": 562.8716716766357,
|
780 |
+
"epoch": 0.8955223880597015,
|
781 |
+
"grad_norm": 0.06974907219409943,
|
782 |
+
"kl": 0.0035638809204101562,
|
783 |
+
"learning_rate": 9.962936025419756e-08,
|
784 |
+
"loss": 0.0001,
|
785 |
+
"reward": 0.7857143245637417,
|
786 |
+
"reward_std": 0.1675086230970919,
|
787 |
+
"rewards/accuracy_reward": 0.7857143245637417,
|
788 |
+
"rewards/format_reward": 0.0,
|
789 |
+
"step": 60
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"completion_length": 584.5279273986816,
|
793 |
+
"epoch": 0.9104477611940298,
|
794 |
+
"grad_norm": 0.13824282586574554,
|
795 |
+
"kl": 0.003696441650390625,
|
796 |
+
"learning_rate": 7.341522555726971e-08,
|
797 |
+
"loss": 0.0001,
|
798 |
+
"reward": 0.7511161006987095,
|
799 |
+
"reward_std": 0.19415182201191783,
|
800 |
+
"rewards/accuracy_reward": 0.7511161006987095,
|
801 |
+
"rewards/format_reward": 0.0,
|
802 |
+
"step": 61
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"completion_length": 549.1629695892334,
|
806 |
+
"epoch": 0.9253731343283582,
|
807 |
+
"grad_norm": 0.10054602473974228,
|
808 |
+
"kl": 0.004033088684082031,
|
809 |
+
"learning_rate": 5.11112605663977e-08,
|
810 |
+
"loss": 0.0002,
|
811 |
+
"reward": 0.8381696827709675,
|
812 |
+
"reward_std": 0.1603721366263926,
|
813 |
+
"rewards/accuracy_reward": 0.8381696827709675,
|
814 |
+
"rewards/format_reward": 0.0,
|
815 |
+
"step": 62
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"completion_length": 593.0893096923828,
|
819 |
+
"epoch": 0.9402985074626866,
|
820 |
+
"grad_norm": 0.08826031535863876,
|
821 |
+
"kl": 0.0032329559326171875,
|
822 |
+
"learning_rate": 3.277859889929147e-08,
|
823 |
+
"loss": 0.0001,
|
824 |
+
"reward": 0.812500037252903,
|
825 |
+
"reward_std": 0.1807763264514506,
|
826 |
+
"rewards/accuracy_reward": 0.812500037252903,
|
827 |
+
"rewards/format_reward": 0.0,
|
828 |
+
"step": 63
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"completion_length": 549.9207801818848,
|
832 |
+
"epoch": 0.9552238805970149,
|
833 |
+
"grad_norm": 0.0768972784280777,
|
834 |
+
"kl": 0.0036096572875976562,
|
835 |
+
"learning_rate": 1.846748910729351e-08,
|
836 |
+
"loss": 0.0001,
|
837 |
+
"reward": 0.8225446753203869,
|
838 |
+
"reward_std": 0.12298994930461049,
|
839 |
+
"rewards/accuracy_reward": 0.8225446753203869,
|
840 |
+
"rewards/format_reward": 0.0,
|
841 |
+
"step": 64
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"completion_length": 544.910737991333,
|
845 |
+
"epoch": 0.9701492537313433,
|
846 |
+
"grad_norm": 0.07084512710571289,
|
847 |
+
"kl": 0.0035963058471679688,
|
848 |
+
"learning_rate": 8.217156947590065e-09,
|
849 |
+
"loss": 0.0001,
|
850 |
+
"reward": 0.8169643096625805,
|
851 |
+
"reward_std": 0.12426057457923889,
|
852 |
+
"rewards/accuracy_reward": 0.8169643096625805,
|
853 |
+
"rewards/format_reward": 0.0,
|
854 |
+
"step": 65
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"completion_length": 587.8024768829346,
|
858 |
+
"epoch": 0.9850746268656716,
|
859 |
+
"grad_norm": 0.08717910200357437,
|
860 |
+
"kl": 0.003803253173828125,
|
861 |
+
"learning_rate": 2.0556978681392503e-09,
|
862 |
+
"loss": 0.0002,
|
863 |
+
"reward": 0.7444196753203869,
|
864 |
+
"reward_std": 0.17243521055206656,
|
865 |
+
"rewards/accuracy_reward": 0.7444196753203869,
|
866 |
+
"rewards/format_reward": 0.0,
|
867 |
+
"step": 66
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"completion_length": 574.7916831970215,
|
871 |
+
"epoch": 1.0,
|
872 |
+
"grad_norm": 0.0701616182923317,
|
873 |
+
"kl": 0.0031533241271972656,
|
874 |
+
"learning_rate": 0.0,
|
875 |
+
"loss": 0.0001,
|
876 |
+
"reward": 0.7291666679084301,
|
877 |
+
"reward_std": 0.0578637570142746,
|
878 |
+
"rewards/accuracy_reward": 0.7291666679084301,
|
879 |
+
"rewards/format_reward": 0.0,
|
880 |
+
"step": 67
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 1.0,
|
884 |
+
"step": 67,
|
885 |
+
"total_flos": 0.0,
|
886 |
+
"train_loss": 0.00012216681254848273,
|
887 |
+
"train_runtime": 12383.6526,
|
888 |
+
"train_samples_per_second": 0.606,
|
889 |
+
"train_steps_per_second": 0.005
|
890 |
+
}
|
891 |
+
],
|
892 |
+
"logging_steps": 1,
|
893 |
+
"max_steps": 67,
|
894 |
+
"num_input_tokens_seen": 0,
|
895 |
+
"num_train_epochs": 1,
|
896 |
+
"save_steps": 500,
|
897 |
+
"stateful_callbacks": {
|
898 |
+
"TrainerControl": {
|
899 |
+
"args": {
|
900 |
+
"should_epoch_stop": false,
|
901 |
+
"should_evaluate": false,
|
902 |
+
"should_log": false,
|
903 |
+
"should_save": false,
|
904 |
+
"should_training_stop": false
|
905 |
+
},
|
906 |
+
"attributes": {}
|
907 |
+
}
|
908 |
+
},
|
909 |
+
"total_flos": 0.0,
|
910 |
+
"train_batch_size": 1,
|
911 |
+
"trial_name": null,
|
912 |
+
"trial_params": null
|
913 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2838c5d1a0a848227c256434708f5637fd9dc377c9646ae5cdab5e045aa72f5d
|
3 |
+
size 7288
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|