from diffusers import UNet2DModel import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Tuple, Union from collections import OrderedDict from dataclasses import dataclass from datasets import load_dataset import matplotlib.pyplot as plt from torchvision import transforms from functools import partial import torch from torch.utils.data import DataLoader from PIL import Image from diffusers import DDPMScheduler import torch.nn.functional as F from accelerate import Accelerator from diffusers import DDPMPipeline import os from huggingface_hub import create_repo, upload_folder class DPM(UNet2DModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # créer bottleneck_attn ici (selon ton architecture) self.bottleneck_attn = nn.MultiheadAttention( embed_dim=self.config.block_out_channels[-1], num_heads=8, # ou ajuster selon besoin batch_first=True ) def forward( self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], class_labels: Optional[torch.Tensor] = None, return_dict: bool = True, prototype: Optional[torch.Tensor] = None, # <--- ajouté ici ) -> Union[UNet2DOutput, Tuple]: r""" The [`UNet2DModel`] forward method. Args: sample (`torch.Tensor`): The noisy input tensor with the following shape `(batch, channel, height, width)`. timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d.UNet2DOutput`] instead of a plain tuple. Returns: [`~models.unets.unet_2d.UNet2DOutput`] or `tuple`: If `return_dict` is True, an [`~models.unets.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device) t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) emb = self.time_embedding(t_emb) if self.class_embedding is not None: if class_labels is None: raise ValueError("class_labels should be provided when doing class conditioning") if self.config.class_embed_type == "timestep": class_labels = self.time_proj(class_labels) class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) emb = emb + class_emb elif self.class_embedding is None and class_labels is not None: raise ValueError("class_embedding needs to be initialized in order to use class conditioning") # 2. pre-process skip_sample = sample sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "skip_conv"): sample, res_samples, skip_sample = downsample_block( hidden_states=sample, temb=emb, skip_sample=skip_sample ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples # ----------- Cross-Attention after downsampling ------------------ if prototype is None: raise ValueError("You must provide a `prototype` tensor for cross-attention") b, c, h, w = sample.shape query = sample.view(b, c, h * w).transpose(1, 2) # (B, HW, C) # prototype: expected shape (B, N, C) key = value = prototype.to(dtype=sample.dtype) attn_output, _ = self.bottleneck_attn(query, key, value) attn_output = attn_output.transpose(1, 2).view(b, c, h, w) # (B, C, H, W) # Résiduel sample = sample + attn_output # --------------------------------------------------------------- # 4. mid if self.mid_block is not None: sample = self.mid_block(sample, emb) # 5. up skip_sample = None for upsample_block in self.up_blocks: res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] if hasattr(upsample_block, "skip_conv"): sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample) else: sample = upsample_block(sample, res_samples, emb) # 6. post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if skip_sample is not None: sample += skip_sample if self.config.time_embedding_type == "fourier": timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:])))) sample = sample / timesteps if not return_dict: return (sample,) return UNet2DOutput(sample=sample)