bilalfaye commited on
Commit
46df622
Β·
verified Β·
1 Parent(s): 41a3f4d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -167
README.md CHANGED
@@ -1,199 +1,106 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
 
 
 
 
 
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
+ base_model:
3
+ - google/flan-t5-small
4
+ - google/flan-t5-large
5
+ - google/flan-t5-xl
6
  ---
7
 
8
+ ## 🧠 Flan-T5-{Small|Large|XL}-RPO
9
 
10
+ > πŸ”¬ Fine-tuned with **Reward Partitioning Optimization (RPO)** β€” a value-free, stable method for single-trajectory reinforcement learning with scalar feedback.
11
 
12
+ ---
13
 
14
+ ### πŸ“Œ Model Summary
15
 
16
+ This model is a fine-tuned variant of the [Flan-T5](https://huggingface.co/google/flan-t5) {Small|Large|XL} checkpoint, trained using **Reward Partitioning Optimization (RPO)**. RPO is a new method designed for learning from single-trajectory scalar feedback (e.g., thumbs up/down), and eliminates the need for learning value functions or preference pairs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ * βœ… Trained with only (prompt, response, reward) triplets.
19
+ * πŸ” No joint optimization, no auxiliary models.
20
+ * πŸš€ Efficient and stable training.
21
+ * πŸ€– Strong preference alignment (evaluated by LLM-as-a-judge).
22
+ * πŸ“Š Outperforms KTO and DRO in automatic metrics and LLM preference winrate.
23
 
24
+ ---
25
 
26
+ ### πŸ§ͺ Training Details
27
 
28
+ * **Base Model:** `flan-t5-{small|large|xl}`
29
+ * **Dataset:** [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) β€” high-quality (prompt, response, reward) triplets with multiple completions per prompt.
30
+ * **Feedback Format:** scalar reward (e.g., \[prompt, response, reward]).
31
+ * **GPU Used:** 1Γ— A100 (80GB)
32
+ * **Training Objective:** RPO supervised learning using partitioned reward normalization.
33
+ * **Baselines Compared:** DRO and KTO.
34
 
35
+ ---
36
 
37
+ ### πŸ€– Inference
38
 
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
41
+ import torch
42
 
43
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
44
+ model_name = "bilalfaye/flan-t5-{small|large|xl}-rpo"
45
 
46
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
47
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
48
 
49
+ prompt = "How can I improve my productivity working from home?"
50
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
51
 
52
+ outputs = model.generate(
53
+ input_ids=inputs["input_ids"],
54
+ max_new_tokens=128,
55
+ do_sample=True,
56
+ temperature=0.7,
57
+ top_k=50,
58
+ top_p=0.95,
59
+ repetition_penalty=1.2,
60
+ no_repeat_ngram_size=3,
61
+ )
62
 
63
+ response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
64
+ print(response)
65
+ ```
66
 
67
+ ---
68
 
69
+ ### πŸ“ˆ Evaluation Summary
70
 
71
+ | Judge | Win Rate vs DRO | Win Rate vs KTO | Win Rate vs SFT |
72
+ | ------- | --------------- | --------------- | --------------- |
73
+ | Mistral | βœ… **83–93%** | βœ… **82–93%** | βœ… **82–84%** |
74
+ | LLaMA | βœ… **67–74%** | βœ… **65–72%** | βœ… **63–73%** |
75
 
76
+ ---
77
 
78
+ ### βœ… Use Cases
79
 
80
+ * Aligned conversational agents
81
+ * Helpful, non-toxic instruction following
82
+ * Scalar feedback training pipelines
83
+ * Preference-optimized generation (without pairwise preference labels)
84
 
85
+ ---
86
 
87
+ ### πŸ“š Citation
88
 
89
+ If you use this model, please cite the following paper:
90
 
91
+ ```bibtex
92
+ @article{faye2024rpo,
93
+ title = {Value-Free Policy Optimization via Reward Partitioning},
94
+ author = {Bilal Faye and Hanane Azzag and Mustapha Lebbah},
95
+ journal = {arXiv preprint arXiv:2406.XXXX},
96
+ year = {2024}
97
+ }
98
+ ```
99
 
100
+ ---
101
 
102
+ ### πŸ”— Related Models
103
 
104
+ * `bilalfaye/flan-t5-small-rpo`
105
+ * `bilalfaye/flan-t5-large-rpo`
106
+ * `bilalfaye/flan-t5-xl-rpo`