--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bert results: [] --- # bert This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1679 - Accuracy: 0.9669 - F1: 0.9667 - Precision: 0.9685 - Recall: 0.9669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.1054 | 1.0 | 38 | 1.0886 | 0.4106 | 0.2390 | 0.1686 | 0.4106 | | 1.0709 | 2.0 | 76 | 0.9872 | 0.6490 | 0.5588 | 0.5174 | 0.6490 | | 0.838 | 3.0 | 114 | 0.7455 | 0.6424 | 0.5447 | 0.4737 | 0.6424 | | 0.2981 | 4.0 | 152 | 0.2033 | 0.9338 | 0.9340 | 0.9413 | 0.9338 | | 0.1249 | 5.0 | 190 | 0.1285 | 0.9669 | 0.9668 | 0.9672 | 0.9669 | | 0.1224 | 6.0 | 228 | 0.2481 | 0.9470 | 0.9476 | 0.9546 | 0.9470 | | 0.0015 | 7.0 | 266 | 0.3061 | 0.9536 | 0.9535 | 0.9582 | 0.9536 | | 0.0332 | 8.0 | 304 | 0.3735 | 0.9404 | 0.9406 | 0.9498 | 0.9404 | | 0.1496 | 9.0 | 342 | 0.2024 | 0.9669 | 0.9670 | 0.9700 | 0.9669 | | 0.0629 | 10.0 | 380 | 0.1679 | 0.9669 | 0.9667 | 0.9685 | 0.9669 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.4.1 - Tokenizers 0.21.0