--- pipeline_tag: image-text-to-text tags: - visual-document-understanding - visual-question-answering - indian-documents license: apache-2.0 language: - en library_name: transformers --- # Patram-7B-Instruct Patram-7B-Instruct by BharatGen is a 7B parameter vision-language model trained from scratch for visual document understanding. As India’s first document foundation model, it is built to tackle complex document analysis. The model was trained on a carefully curated instruction-tuned dataset, combining diverse public and custom synthetic data designed to support a broad spectrum of document understanding tasks. ## Model Overview * **Architecture:** Vision Transformer (ViT) + MLP projector + OLMo-7B LLM * **Training Data:** BharatDocs-v1, a dataset of diverse Indian documents + Other Open Source Document Datasets * **Supported I/O Formats:** The model currently accepts English-language instructions and image files (e.g., PNG, JPEG) as input. The output is provided in text format. * **Language:** English (Indian language support upcoming) * **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Usage Examples Use the `transformers` library. ```python import torch from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig from PIL import Image import requests # Model ID and device setup model_id = "bharatgenai/patram-7b-instruct" device = "cuda" if torch.cuda.is_available() else "cpu" # Load processor and model processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True ).to(device) def get_patram_response(image_path_or_url, question): try: # Load image if image_path_or_url.startswith("http"): image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert("RGB") else: image = Image.open(image_path_or_url).convert("RGB") except Exception as e: print(f"Error loading image: {e}") return None # Format the prompt as expected prompt = f"Question: {question} Answer based on the image." try: # Preprocess image and text using the processor inputs = processor.process(images=[image], text=prompt) inputs = {k: v.to(device).unsqueeze(0) for k, v in inputs.items()} # Generate output using model's generate_from_batch method (Patram-specific) output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # Extract generated tokens (excluding input tokens) and decode generated_tokens = output[0, inputs['input_ids'].size(1):] response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True).strip() return response except Exception as e: print(f"Error during inference: {e}") return None # Example usage: # image_input = "https://knowscope.in/wp-content/uploads/2025/05/cghd-nag.png" # question = "Who issued this notice?" # answer = get_patram_response(image_input, question) # if answer: # print("Answer:", answer) ``` **Note**: If you're trying this on an Apple Silicon (M1/M2/M3/M4/...) chip, please follow the official documentation by PyTorch and Hugging Face for installing dependencies: - [PyTorch's official guide on installation (macOS)](https://pytorch.org/get-started/locally/#:~:text=torch%20torchvision%20torchaudio-,Installing%20on%20macOS,-PyTorch%20can%20be) - [Hugging Face Transformers performance tips](https://huggingface.co/docs/transformers/main/en/perf_train_special) ## Evaluations We evaluated Patram-7B-Instruct alongside other vision-language models (VLMs) in the 7B–9B parameter range across multiple public document benchmarks. **Benchmarks**: DocVQA, VisualMRC, Patram-Bench Patram-Bench is an in-house benchmark designed for Indic Document VQA. **Metric**: G-Eval (LLM-as-a-judge) | Model | Overall | DocVQA | Patram-Bench | VisualMRC | | ---------------------- | ------- | ------ | ------------ | --------- | | claude-3.7-sonnet | 0.8830 | 0.8480 | 0.8857 | 0.8830 | | Qwen2.5-VL-7B-Instruct | 0.8759 | 0.8722 | 0.6816 | 0.9169 | | gemma-3-12b-it | 0.8556 | 0.8451 | 0.6349 | 0.9069 | | **patram-7b-instruct** | 0.8331 | 0.8550 | 0.6515 | 0.8510 | | InternVL3-9B | 0.7865 | 0.8681 | 0.6888 | 0.7405 | | deepseek-vl2 | 0.7581 | 0.8739 | 0.5089 | 0.7144 | *Note: The benchmarked results reflect the API variant. ## Citation ```bibtex @online{BharatGenPatramLaunch2025, author = {{BharatGen Team}}, title = {BharatGen Unveils Patram: India's Pioneering Vision-Language Foundation Model for Document Intelligence}, year = {2025}, url = {https://bharatgen.com/blog/patram-launch}, urldate = {2025-06-02} } ``` ## Resources * **Model**: [huggingface.co/bharatgenai/patram-7b-instruct](https://huggingface.co/bharatgenai/patram-7b-instruct) * **Project Page**: [bharatgen.com/patram](https://bharatgen.com/patram) * **Blog**: [bharatgen.com/blog/patram-launch](https://bharatgen.com/blog/patram-launch) ## Authors * **Principal Investigators**: Prof. Ravi Kiran Sarvadevabhatla, Prof. Ganesh Ramakrishnan * **Contributors**: BharatGen Team ## Contact * [Contact Form](https://bharatgen.com/contact) * Hugging Face Community Tab