Commit
路
e06d14d
1
Parent(s):
2ed7dd9
added models
Browse files- README.md +106 -0
- config.json +30 -0
- convert_pytorch_to_flax.py +3 -0
- convert_pytorch_to_tensorflow.py +3 -0
- flax_model.msgpack +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- squad_v2
|
4 |
+
license: cc-by-4.0
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# electra-base for QA
|
9 |
+
|
10 |
+
## Overview
|
11 |
+
**Language model:** electra-base
|
12 |
+
**Language:** English
|
13 |
+
**Downstream-task:** Extractive QA
|
14 |
+
**Training data:** SQuAD 2.0
|
15 |
+
**Eval data:** SQuAD 2.0
|
16 |
+
**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)
|
17 |
+
**Infrastructure**: 1x Tesla v100
|
18 |
+
|
19 |
+
## Hyperparameters
|
20 |
+
|
21 |
+
```
|
22 |
+
seed=42
|
23 |
+
batch_size = 32
|
24 |
+
n_epochs = 5
|
25 |
+
base_LM_model = "google/electra-base-discriminator"
|
26 |
+
max_seq_len = 384
|
27 |
+
learning_rate = 1e-4
|
28 |
+
lr_schedule = LinearWarmup
|
29 |
+
warmup_proportion = 0.1
|
30 |
+
doc_stride=128
|
31 |
+
max_query_length=64
|
32 |
+
```
|
33 |
+
|
34 |
+
## Performance
|
35 |
+
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
36 |
+
```
|
37 |
+
"exact": 77.30144024256717,
|
38 |
+
"f1": 81.35438272008543,
|
39 |
+
"total": 11873,
|
40 |
+
"HasAns_exact": 74.34210526315789,
|
41 |
+
"HasAns_f1": 82.45961302894314,
|
42 |
+
"HasAns_total": 5928,
|
43 |
+
"NoAns_exact": 80.25231286795626,
|
44 |
+
"NoAns_f1": 80.25231286795626,
|
45 |
+
"NoAns_total": 5945
|
46 |
+
```
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
|
50 |
+
### In Transformers
|
51 |
+
```python
|
52 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
53 |
+
|
54 |
+
model_name = "deepset/electra-base-squad2"
|
55 |
+
|
56 |
+
# a) Get predictions
|
57 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
58 |
+
QA_input = {
|
59 |
+
'question': 'Why is model conversion important?',
|
60 |
+
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
61 |
+
}
|
62 |
+
res = nlp(QA_input)
|
63 |
+
|
64 |
+
# b) Load model & tokenizer
|
65 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
67 |
+
```
|
68 |
+
|
69 |
+
### In FARM
|
70 |
+
|
71 |
+
```python
|
72 |
+
from farm.modeling.adaptive_model import AdaptiveModel
|
73 |
+
from farm.modeling.tokenization import Tokenizer
|
74 |
+
from farm.infer import Inferencer
|
75 |
+
|
76 |
+
model_name = "deepset/electra-base-squad2"
|
77 |
+
|
78 |
+
# a) Get predictions
|
79 |
+
nlp = Inferencer.load(model_name, task_type="question_answering")
|
80 |
+
QA_input = [{"questions": ["Why is model conversion important?"],
|
81 |
+
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
|
82 |
+
res = nlp.inference_from_dicts(dicts=QA_input)
|
83 |
+
|
84 |
+
# b) Load model & tokenizer
|
85 |
+
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
|
86 |
+
tokenizer = Tokenizer.load(model_name)
|
87 |
+
```
|
88 |
+
|
89 |
+
### In haystack
|
90 |
+
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
|
91 |
+
```python
|
92 |
+
reader = FARMReader(model_name_or_path="deepset/electra-base-squad2")
|
93 |
+
# or
|
94 |
+
reader = TransformersReader(model="deepset/electra-base-squad2",tokenizer="deepset/electra-base-squad2")
|
95 |
+
```
|
96 |
+
|
97 |
+
|
98 |
+
## Authors
|
99 |
+
Vaishali Pal `vaishali.pal [at] deepset.ai`
|
100 |
+
Branden Chan: `branden.chan [at] deepset.ai`
|
101 |
+
Timo M枚ller: `timo.moeller [at] deepset.ai`
|
102 |
+
Malte Pietsch: `malte.pietsch [at] deepset.ai`
|
103 |
+
Tanay Soni: `tanay.soni [at] deepset.ai`
|
104 |
+
|
105 |
+
Note:
|
106 |
+
Borrowed this model from Haystack model repo for adding tensorflow model.
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ElectraForQuestionAnswering"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"embedding_size": 768,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"language": "english",
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "electra",
|
17 |
+
"name": "Electra",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"summary_activation": "gelu",
|
23 |
+
"summary_last_dropout": 0,
|
24 |
+
"summary_type": "first",
|
25 |
+
"summary_use_proj": true,
|
26 |
+
"transformers_version": "4.19.0.dev0",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 30522
|
30 |
+
}
|
convert_pytorch_to_flax.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import FlaxAutoModelForQuestionAnswering
|
2 |
+
model = FlaxAutoModelForQuestionAnswering.from_pretrained("./", from_pt=True)
|
3 |
+
model.save_pretrained("./")
|
convert_pytorch_to_tensorflow.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TFAutoModelForQuestionAnswering
|
2 |
+
model = TFAutoModelForQuestionAnswering.from_pretrained("./", from_pt=True)
|
3 |
+
model.save_pretrained("./")
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff9a83a3413c0d57da7be38f7a498a5bd998f4ff8c397a9651110ba1250b94e
|
3 |
+
size 435579889
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33abdbab680c8bae8707320df17c5d4fba5969adb465e81029905fa0284d3d3e
|
3 |
+
size 435618605
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6323b685ea8c02486fc1a7f0df7875bd8ee320407853674bc1c1abb739d00d88
|
3 |
+
size 435858448
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "model_max_length": 512, "special_tokens_map_file": "/home/vaishali/Documents/deepset/electra-english-qa-tutorial_epochs5/special_tokens_map.json", "full_tokenizer_file": null}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|