--- license: creativeml-openrail-m base_model: "stabilityai/stable-diffusion-xl-base-1.0" tags: - sdxl - sdxl-diffusers - text-to-image - image-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - standard pipeline_tag: text-to-image inference: true --- # simpletuner This is a PEFT SingLoRA derived from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). The main validation prompt used during training was: ``` A photo-realistic image of a River Phoenix sitting in a field of lavender flowers. The River Phoenix is looking at the viewer. ``` ## Validation settings - CFG: `4.2` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `ddim` - Seed: `42` - Resolution: `1024x1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 0 - Training steps: 1 - Learning rate: 0.0001 - Learning rate schedule: constant - Warmup steps: 0 - Max grad value: 2.0 - Effective batch size: 4 - Micro-batch size: 4 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing']) - Optimizer: optimi-stableadamw - Trainable parameter precision: Pure BF16 - Base model precision: `int8-quanto` - Caption dropout probability: 0.1% - LoRA Rank: 16 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default - LoRA mode: SingLoRA ## Datasets ### subject-1024 - Repeats: 4 - Total number of images: 29 - Total number of aspect buckets: 9 - Resolution: 1.048576 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### subject-512 - Repeats: 4 - Total number of images: 29 - Total number of aspect buckets: 8 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline from peft_singlora import setup_singlora setup_singlora() # overwrites the nn.Linear mapping in PEFT. model_id = 'stabilityai/stable-diffusion-xl-base-1.0' adapter_id = 'bghira/simpletuner' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "A photo-realistic image of a River Phoenix sitting in a field of lavender flowers. The River Phoenix is looking at the viewer." negative_prompt = 'blurry, cropped, ugly' ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.unet, weights=qint8) freeze(pipeline.unet) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level model_output = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=1024, height=1024, guidance_scale=4.2, guidance_rescale=0.0, ).images[0] model_output.save("output.png", format="PNG") ```