File size: 5,025 Bytes
aa57ff5
 
 
 
 
 
 
 
 
 
 
 
 
a26cd60
aa57ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a26cd60
aa57ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3ba74
6030c46
aa57ff5
 
 
 
a26cd60
aa57ff5
 
a26cd60
aa57ff5
 
 
 
 
 
 
 
a26cd60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa57ff5
 
 
a26cd60
aa57ff5
a26cd60
6620fd3
aa57ff5
 
 
 
 
8e3c608
 
 
18d12d4
8e3c608
 
 
 
 
aa57ff5
 
 
 
 
 
 
 
a26cd60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa57ff5
a26cd60
 
 
aa57ff5
a26cd60
 
 
aa57ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: creativeml-openrail-m
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
tags:
  - sdxl
  - sdxl-diffusers
  - text-to-image
  - image-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - lycoris
pipeline_tag: text-to-image
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'A photo-realistic image of a cat'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
---

# simpletuner-sdxl-lora-test

This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).

The main validation prompt used during training was:
```
A photo-realistic image of a cat
```


## Validation settings
- CFG: `4.2`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `ddim`
- Seed: `42`
- Resolution: `1024x1024`


Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 1
- Training steps: 390
- Learning rate: 3e-07
  - Learning rate schedule: constant
  - Warmup steps: 100
- Max grad value: 2.0
- Effective batch size: 3
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 3
- Gradient checkpointing: True
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
- Optimizer: bnb-lion8bit
- Trainable parameter precision: Pure BF16
- Base model precision: `no_change`
- Caption dropout probability: 0.1%



### LyCORIS Config:
```json
{
    "bypass_mode": true,
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 12,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 12
            },
            "FeedForward": {
                "factor": 6
            }
        }
    }
}
```


## Datasets

### signs-discovery
- Repeats: 0
- Total number of images: ~423
- Total number of aspect buckets: 5
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### signs-discovery-512
- Repeats: 0
- Total number of images: ~420
- Total number of aspect buckets: 4
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No


## Inference


```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_repo_id = 'bghira/simpletuner-sdxl-lora-test'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.unet)
wrapper.merge_to()

prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.unet, weights=qint8)
#freeze(pipeline.unet)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]

model_output.save("output.png", format="PNG")

```