bghira commited on
Commit
03152d8
·
verified ·
1 Parent(s): 1a1fb10

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +176 -0
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "Shitao/OmniGen-v1-diffusers"
4
+ tags:
5
+ - omnigen
6
+ - omnigen-diffusers
7
+ - text-to-image
8
+ - image-to-image
9
+ - diffusers
10
+ - simpletuner
11
+ - not-for-all-audiences
12
+ - lora
13
+ - template:sd-lora
14
+ - lycoris
15
+ pipeline_tag: text-to-image
16
+ inference: true
17
+ widget:
18
+ - text: 'unconditional (blank prompt)'
19
+ parameters:
20
+ negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
21
+ output:
22
+ url: ./assets/image_0_0.png
23
+ - text: 'An ugly hillbilly woman with missing teeth and a mediocre smile'
24
+ parameters:
25
+ negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
26
+ output:
27
+ url: ./assets/image_1_0.png
28
+ ---
29
+
30
+ # omnigen-lora-test
31
+
32
+ This is a LyCORIS adapter derived from [Shitao/OmniGen-v1-diffusers](https://huggingface.co/Shitao/OmniGen-v1-diffusers).
33
+
34
+ The main validation prompt used during training was:
35
+ ```
36
+ An ugly hillbilly woman with missing teeth and a mediocre smile
37
+ ```
38
+
39
+
40
+ ## Validation settings
41
+ - CFG: `3.0`
42
+ - CFG Rescale: `0.0`
43
+ - Steps: `30`
44
+ - Sampler: `FlowMatchEulerDiscreteScheduler`
45
+ - Seed: `42`
46
+ - Resolution: `768x768`
47
+
48
+
49
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
50
+
51
+ You can find some example images in the following gallery:
52
+
53
+
54
+ <Gallery />
55
+
56
+ The text encoder **was not** trained.
57
+ You may reuse the base model text encoder for inference.
58
+
59
+
60
+ ## Training settings
61
+
62
+ - Training epochs: 1
63
+ - Training steps: 10
64
+ - Learning rate: 5e-05
65
+ - Learning rate schedule: cosine
66
+ - Warmup steps: 400000
67
+ - Max grad value: 0.0
68
+ - Effective batch size: 1
69
+ - Micro-batch size: 1
70
+ - Gradient accumulation steps: 1
71
+ - Number of GPUs: 1
72
+ - Gradient checkpointing: True
73
+ - Prediction type: flow_matching[]
74
+ - Optimizer: optimi-lion
75
+ - Trainable parameter precision: Pure BF16
76
+ - Base model precision: `int8-quanto`
77
+ - Caption dropout probability: 0.1%
78
+
79
+
80
+
81
+ ### LyCORIS Config:
82
+ ```json
83
+ {
84
+ "bypass_mode": true,
85
+ "algo": "lokr",
86
+ "multiplier": 1.0,
87
+ "full_matrix": true,
88
+ "linear_dim": 10000,
89
+ "linear_alpha": 1,
90
+ "factor": 4,
91
+ "apply_preset": {
92
+ "target_module": [
93
+ "Attention"
94
+ ],
95
+ "module_algo_map": {
96
+ "Attention": {
97
+ "factor": 24
98
+ }
99
+ }
100
+ }
101
+ }
102
+ ```
103
+
104
+
105
+ ## Datasets
106
+
107
+ ### edited-images-768
108
+ - Repeats: 0
109
+ - Total number of images: 5
110
+ - Total number of aspect buckets: 1
111
+ - Resolution: 0.589824 megapixels
112
+ - Cropped: False
113
+ - Crop style: None
114
+ - Crop aspect: None
115
+ - Used for regularisation data: No
116
+
117
+
118
+ ## Inference
119
+
120
+
121
+ ```python
122
+ import torch
123
+ from diffusers import DiffusionPipeline
124
+ from lycoris import create_lycoris_from_weights
125
+
126
+
127
+ def download_adapter(repo_id: str):
128
+ import os
129
+ from huggingface_hub import hf_hub_download
130
+ adapter_filename = "pytorch_lora_weights.safetensors"
131
+ cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
132
+ cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
133
+ path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
134
+ path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
135
+ os.makedirs(path_to_adapter, exist_ok=True)
136
+ hf_hub_download(
137
+ repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
138
+ )
139
+
140
+ return path_to_adapter_file
141
+
142
+ model_id = 'Shitao/OmniGen-v1-diffusers'
143
+ adapter_repo_id = 'bghira/omnigen-lora-test'
144
+ adapter_filename = 'pytorch_lora_weights.safetensors'
145
+ adapter_file_path = download_adapter(repo_id=adapter_repo_id)
146
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
147
+ lora_scale = 1.0
148
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
149
+ wrapper.merge_to()
150
+
151
+ prompt = "An ugly hillbilly woman with missing teeth and a mediocre smile"
152
+ negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
153
+
154
+ ## Optional: quantise the model to save on vram.
155
+ ## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
156
+ from optimum.quanto import quantize, freeze, qint8
157
+ quantize(pipeline.transformer, weights=qint8)
158
+ freeze(pipeline.transformer)
159
+
160
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
161
+ model_output = pipeline(
162
+ prompt=prompt,
163
+ negative_prompt=negative_prompt,
164
+ num_inference_steps=30,
165
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
166
+ width=768,
167
+ height=768,
168
+ guidance_scale=3.0,
169
+ ).images[0]
170
+
171
+ model_output.save("output.png", format="PNG")
172
+
173
+ ```
174
+
175
+
176
+