--- license: apache-2.0 base_model: "fal/AuraFlow" tags: - auraflow - auraflow-diffusers - text-to-image - image-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - standard pipeline_tag: text-to-image inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average' output: url: ./assets/image_0_0.png - text: 'An domokun running through a field with flowers all around him.' parameters: negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average' output: url: ./assets/image_1_0.png --- # Auraflow-DomoKun-LoRA-rank8 This is a PEFT LoRA derived from [fal/AuraFlow](https://huggingface.co/fal/AuraFlow). The main validation prompt used during training was: ``` An domokun running through a field with flowers all around him. ``` ## Validation settings - CFG: `4.0` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `512x512` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 1 - Training steps: 1000 - Learning rate: 0.0001 - Learning rate schedule: constant - Warmup steps: 100 - Max grad value: 0.01 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow_matching (extra parameters=['shift=3']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Base model precision: `no_change` - Caption dropout probability: 0.1% - LoRA Rank: 8 - LoRA Alpha: 8.0 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### domokun-cropped-512-NonReg - Repeats: 10 - Total number of images: 27 - Total number of aspect buckets: 3 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### domokun-cropped-512 - Repeats: 10 - Total number of images: 27 - Total number of aspect buckets: 7 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: Yes ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'fal/AuraFlow' adapter_id = 'bghira/Auraflow-DomoKun-LoRA-rank8' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "An domokun running through a field with flowers all around him." negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average' ## Optional: quantise the model to save on vram. ## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time. #from optimum.quanto import quantize, freeze, qint8 #quantize(pipeline.transformer, weights=qint8) #freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level model_output = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=512, height=512, guidance_scale=4.0, ).images[0] model_output.save("output.png", format="PNG") ```