Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,50 @@
|
|
1 |
---
|
2 |
base_model: unsloth/csm-1b
|
3 |
tags:
|
4 |
-
- text-generation-inference
|
5 |
- transformers
|
6 |
-
- unsloth
|
7 |
- csm
|
8 |
license: apache-2.0
|
9 |
language:
|
10 |
- en
|
|
|
|
|
11 |
---
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
base_model: unsloth/csm-1b
|
3 |
tags:
|
|
|
4 |
- transformers
|
|
|
5 |
- csm
|
6 |
license: apache-2.0
|
7 |
language:
|
8 |
- en
|
9 |
+
datasets:
|
10 |
+
- beyoru/kafka-voice
|
11 |
---
|
12 |
|
13 |
+
# Usage
|
14 |
+
```
|
15 |
+
import torch
|
16 |
+
from transformers import CsmForConditionalGeneration, AutoProcessor
|
17 |
+
|
18 |
+
model_id = "beyoru/kafka-sesame"
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
|
21 |
+
# load the model and the processor
|
22 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
23 |
+
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
model.generation_config.max_length = 250 # big enough to avoid recompilation
|
27 |
+
model.generation_config.max_new_tokens = None # would take precedence over max_length
|
28 |
+
model.generation_config.cache_implementation = "static"
|
29 |
+
model.depth_decoder.generation_config.cache_implementation = "static"
|
30 |
+
|
31 |
+
# prepare the inputs
|
32 |
+
text = "[0]Hello from Sesame." # `[0]` for speaker id 0
|
33 |
+
inputs = processor(text, add_special_tokens=True).to(device)
|
34 |
+
|
35 |
+
# another equivalent way to prepare the inputs
|
36 |
+
conversation = [
|
37 |
+
{"role": "0", "content": [{"type": "text", "text": "Hello from Sesame."}]},
|
38 |
+
]
|
39 |
+
inputs = processor.apply_chat_template(
|
40 |
+
conversation,
|
41 |
+
tokenize=True,
|
42 |
+
return_dict=True,
|
43 |
+
).to(device)
|
44 |
+
|
45 |
+
# infer the model
|
46 |
+
@torch.interface_mode()
|
47 |
+
audio = model.generate(**inputs, output_audio=True)
|
48 |
+
processor.save_audio(audio, "example_without_context.wav")
|
49 |
+
|
50 |
+
```
|