--- license: cc-by-nc-sa-4.0 language: - en - zh tags: - text-to-speech library_tag: spark-tts --- ### USAGE: ``` import torch import re import numpy as np from typing import Dict, Any import torchaudio.transforms as T @torch.inference_mode() def generate_speech_from_text( text: str, temperature: float = 0.8, # Generation temperature top_k: int = 50, # Generation top_k top_p: float = 1, # Generation top_p max_new_audio_tokens: int = 2048, # Max tokens for audio part device: torch.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ) -> np.ndarray: """ Generates speech audio from text using default voice control parameters. Args: text (str): The text input to be converted to speech. temperature (float): Sampling temperature for generation. top_k (int): Top-k sampling parameter. top_p (float): Top-p (nucleus) sampling parameter. max_new_audio_tokens (int): Max number of new tokens to generate (limits audio length). device (torch.device): Device to run inference on. Returns: np.ndarray: Generated waveform as a NumPy array. """ prompt = "".join([ "<|task_tts|>", "<|start_content|>", text, "<|end_content|>", "<|start_global_token|>" ]) model_inputs = tokenizer([prompt], return_tensors="pt") print("Generating token sequence...") generated_ids = model.generate( **model_inputs, max_new_tokens=max_new_audio_tokens, # Limit generation length do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p, eos_token_id=tokenizer.eos_token_id, # Stop token pad_token_id=tokenizer.pad_token_id # Use models pad token id ) print("Token sequence generated.") generated_ids_trimmed = generated_ids[:, model_inputs.input_ids.shape[1]:] predicts_text = tokenizer.batch_decode(generated_ids_trimmed, skip_special_tokens=False)[0] # print(f"\nGenerated Text (for parsing):\n{predicts_text}\n") # Debugging # Extract semantic token IDs using regex semantic_matches = re.findall(r"<\|bicodec_semantic_(\d+)\|>", predicts_text) if not semantic_matches: print("Warning: No semantic tokens found in the generated output.") # Handle appropriately - perhaps return silence or raise error return np.array([], dtype=np.float32) pred_semantic_ids = torch.tensor([int(token) for token in semantic_matches]).long().unsqueeze(0) # Add batch dim # Extract global token IDs using regex (assuming controllable mode also generates these) global_matches = re.findall(r"<\|bicodec_global_(\d+)\|>", predicts_text) if not global_matches: print("Warning: No global tokens found in the generated output (controllable mode). Might use defaults or fail.") pred_global_ids = torch.zeros((1, 1), dtype=torch.long) else: pred_global_ids = torch.tensor([int(token) for token in global_matches]).long().unsqueeze(0) # Add batch dim pred_global_ids = pred_global_ids.unsqueeze(0) # Shape becomes (1, 1, N_global) print(f"Found {pred_semantic_ids.shape[1]} semantic tokens.") print(f"Found {pred_global_ids.shape[2]} global tokens.") # 5. Detokenize using BiCodecTokenizer print("Detokenizing audio tokens...") # Ensure audio_tokenizer and its internal model are on the correct device # Squeeze the extra dimension from global tokens as seen in SparkTTS example wav_np = audio_tokenizer.detokenize( pred_global_ids.squeeze(0), # Shape (1, N_global) pred_semantic_ids # Shape (1, N_semantic) ) print("Detokenization complete.") return wav_np if __name__ == "__main__": print(f"Generating speech for: '{input_text}'") text = f"{chosen_voice}: " + input_text if chosen_voice else input_text generated_waveform = generate_speech_from_text(input_text) if generated_waveform.size > 0: import soundfile as sf output_filename = "generated_speech_controllable.wav" sample_rate = audio_tokenizer.config.get("sample_rate", 16000) sf.write(output_filename, generated_waveform, sample_rate) print(f"Audio saved to {output_filename}") # Optional: Play in notebook from IPython.display import Audio, display display(Audio(generated_waveform, rate=sample_rate)) else: print("Audio generation failed (no tokens found?).") ```