pimpalgaonkar commited on
Commit
0875ba8
·
verified ·
1 Parent(s): bc38e7a

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 12288,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 36,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.52.3",
27
+ "use_cache": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.52.3"
13
+ }
global_step220/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79ad1d8a4cc2a13a24a570b45fa37028dc18946ec80af95313e5c04b27af712f
3
+ size 24572212542
global_step220/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07792c39d904fe213426aade034908d53dfa6df3297b8547a0ce3f88e7124608
3
+ size 24572212542
global_step220/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:584b22e1f2ef59ec8a01b7ef2c0fae531196f84c83e5418d6570db6ae842c219
3
+ size 24572212542
global_step220/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34031ddbd5987990a6c9c7be7f30c9b19f2f13f4015dc7a3dcd82a622b60ff2a
3
+ size 24572212542
global_step220/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6056816c04d598e56f0deeb599947e753d26df0efc99eb82cc7f9113942337b
3
+ size 202337
global_step220/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54ccccce8fc084bf2e5931870badeb9fa1d85f351d34e061931bb9829b4f6405
3
+ size 202337
global_step220/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6c3bb78a0f6bf2f16012fb7b60bc190dee49d03fc9d606f25138f608bcec7d0
3
+ size 202337
global_step220/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:478e39f9d680581cdc8474d4107cb872aa2530240d6257c698461424b0795fc2
3
+ size 202337
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step220
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f10241cc7d3f86fc856feaf8eefb2963dd762c2b4dd3b7ea1ee0359029a2165
3
+ size 4902257696
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aca68d899dfd0e72c94980ee720910df3b9e9a45b1232d83b3ab7ddf7a8706d
3
+ size 4915960368
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:700bdaa044afad4693d6e328d49fb1884f2947982c4abfc462c2cef10736643b
3
+ size 4983068496
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5106e5ea9bf4943cf6de9af96a0b199e8b67e69bd100b1460694241fcf254486
3
+ size 1580230264
model.safetensors.index.json ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16381470720
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
145
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
181
+ "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
322
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
323
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
332
+ "model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
333
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
335
+ "model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
339
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
340
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
342
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
343
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
344
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
345
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
347
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
350
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
351
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
354
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
355
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
356
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
358
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
359
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
361
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
362
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
363
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
365
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
366
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
370
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
372
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
373
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
374
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
375
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
377
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
379
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
380
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
386
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
387
+ "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
389
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
393
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
394
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
395
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
397
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
398
+ "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
404
+ "model.norm.weight": "model-00004-of-00004.safetensors"
405
+ }
406
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c5e18f922d0af74d820247ae97bee506ab412554a58345ddf2558abc94ee3e3
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a2dcca6d9741f46592359768ea2212b9321da6408d1fd7d3a80b017bf37f434
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69420ece2c255923c5cbb3c6c9c4a6b9cb38fb57e5d3033c8b7d436a1faf6f13
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66f278b40a1e23b88a657c4e5d03afa8dbbbe14dfeb16f6b4beedaece6cdd0b9
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15e0e97bfaded76707bf1e6997b389b9451dc76c3bb67e11f467592173441b86
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
trainer_state.json ADDED
@@ -0,0 +1,1574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 500,
7
+ "global_step": 220,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.022727272727272728,
14
+ "grad_norm": 26.87245830061202,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.0691,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.045454545454545456,
21
+ "grad_norm": 24.119318241718858,
22
+ "learning_rate": 3.3333333333333333e-06,
23
+ "loss": 0.989,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.06818181818181818,
28
+ "grad_norm": 24.494901097246274,
29
+ "learning_rate": 6.666666666666667e-06,
30
+ "loss": 0.9827,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.09090909090909091,
35
+ "grad_norm": 8.720154396981934,
36
+ "learning_rate": 1e-05,
37
+ "loss": 0.6482,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.11363636363636363,
42
+ "grad_norm": 4.966678220163427,
43
+ "learning_rate": 9.999476022424688e-06,
44
+ "loss": 0.5896,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.13636363636363635,
49
+ "grad_norm": 2.206240528335694,
50
+ "learning_rate": 9.997904199519748e-06,
51
+ "loss": 0.392,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.1590909090909091,
56
+ "grad_norm": 3.9617287120048257,
57
+ "learning_rate": 9.995284860725162e-06,
58
+ "loss": 0.4349,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.18181818181818182,
63
+ "grad_norm": 2.7218886368671966,
64
+ "learning_rate": 9.991618555030848e-06,
65
+ "loss": 0.3502,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.20454545454545456,
70
+ "grad_norm": 1.3224686041620617,
71
+ "learning_rate": 9.986906050861595e-06,
72
+ "loss": 0.342,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.22727272727272727,
77
+ "grad_norm": 1.4655470659379455,
78
+ "learning_rate": 9.981148335916e-06,
79
+ "loss": 0.3311,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.25,
84
+ "grad_norm": 2.099411259913016,
85
+ "learning_rate": 9.974346616959476e-06,
86
+ "loss": 0.3786,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.2727272727272727,
91
+ "grad_norm": 1.5150343483501494,
92
+ "learning_rate": 9.966502319571303e-06,
93
+ "loss": 0.2944,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.29545454545454547,
98
+ "grad_norm": 1.8955486495667653,
99
+ "learning_rate": 9.95761708784585e-06,
100
+ "loss": 0.3586,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.3181818181818182,
105
+ "grad_norm": 1.0770593717657149,
106
+ "learning_rate": 9.94769278404799e-06,
107
+ "loss": 0.3189,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.3409090909090909,
112
+ "grad_norm": 1.8091317213751315,
113
+ "learning_rate": 9.936731488222776e-06,
114
+ "loss": 0.3416,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.36363636363636365,
119
+ "grad_norm": 2.29274261320313,
120
+ "learning_rate": 9.924735497759497e-06,
121
+ "loss": 0.3399,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.38636363636363635,
126
+ "grad_norm": 1.269837989850999,
127
+ "learning_rate": 9.911707326910145e-06,
128
+ "loss": 0.3543,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.4090909090909091,
133
+ "grad_norm": 1.5013795426439296,
134
+ "learning_rate": 9.897649706262474e-06,
135
+ "loss": 0.2903,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.4318181818181818,
140
+ "grad_norm": 1.4088618552574337,
141
+ "learning_rate": 9.882565582167673e-06,
142
+ "loss": 0.2845,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.45454545454545453,
147
+ "grad_norm": 1.5165819472750817,
148
+ "learning_rate": 9.866458116122852e-06,
149
+ "loss": 0.316,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.4772727272727273,
154
+ "grad_norm": 1.6134481868835353,
155
+ "learning_rate": 9.849330684108409e-06,
156
+ "loss": 0.2928,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.5,
161
+ "grad_norm": 1.1143653341061437,
162
+ "learning_rate": 9.831186875880467e-06,
163
+ "loss": 0.276,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.5227272727272727,
168
+ "grad_norm": 0.9830408617009574,
169
+ "learning_rate": 9.812030494218484e-06,
170
+ "loss": 0.313,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.5454545454545454,
175
+ "grad_norm": 1.3736364481102779,
176
+ "learning_rate": 9.79186555412822e-06,
177
+ "loss": 0.3023,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.5681818181818182,
182
+ "grad_norm": 1.338556634218699,
183
+ "learning_rate": 9.770696282000245e-06,
184
+ "loss": 0.3273,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.5909090909090909,
189
+ "grad_norm": 1.34887345898166,
190
+ "learning_rate": 9.748527114724111e-06,
191
+ "loss": 0.3059,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.6136363636363636,
196
+ "grad_norm": 1.1465526284754688,
197
+ "learning_rate": 9.725362698758425e-06,
198
+ "loss": 0.254,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.6363636363636364,
203
+ "grad_norm": 1.1328089241339367,
204
+ "learning_rate": 9.701207889156989e-06,
205
+ "loss": 0.2727,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.6590909090909091,
210
+ "grad_norm": 1.4785097164649903,
211
+ "learning_rate": 9.676067748551232e-06,
212
+ "loss": 0.314,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.6818181818181818,
217
+ "grad_norm": 1.2861366584159655,
218
+ "learning_rate": 9.64994754608912e-06,
219
+ "loss": 0.3216,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.7045454545454546,
224
+ "grad_norm": 1.254630631559985,
225
+ "learning_rate": 9.622852756330797e-06,
226
+ "loss": 0.2671,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.7272727272727273,
231
+ "grad_norm": 1.4601173539398735,
232
+ "learning_rate": 9.594789058101154e-06,
233
+ "loss": 0.283,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.75,
238
+ "grad_norm": 0.9800010703607837,
239
+ "learning_rate": 9.565762333299616e-06,
240
+ "loss": 0.2176,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.7727272727272727,
245
+ "grad_norm": 1.585779573547555,
246
+ "learning_rate": 9.535778665667334e-06,
247
+ "loss": 0.3186,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.7954545454545454,
252
+ "grad_norm": 1.3270309012768746,
253
+ "learning_rate": 9.504844339512096e-06,
254
+ "loss": 0.334,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.8181818181818182,
259
+ "grad_norm": 1.2326173009325117,
260
+ "learning_rate": 9.472965838391187e-06,
261
+ "loss": 0.2808,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.8409090909090909,
266
+ "grad_norm": 1.1558051437795536,
267
+ "learning_rate": 9.44014984375249e-06,
268
+ "loss": 0.2117,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.8636363636363636,
273
+ "grad_norm": 1.0782911468120715,
274
+ "learning_rate": 9.406403233534134e-06,
275
+ "loss": 0.2824,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.8863636363636364,
280
+ "grad_norm": 1.5406724902243696,
281
+ "learning_rate": 9.371733080722911e-06,
282
+ "loss": 0.2335,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.9090909090909091,
287
+ "grad_norm": 1.2044242055409695,
288
+ "learning_rate": 9.33614665187187e-06,
289
+ "loss": 0.2499,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.9318181818181818,
294
+ "grad_norm": 1.2616965501514557,
295
+ "learning_rate": 9.299651405577286e-06,
296
+ "loss": 0.2438,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.9545454545454546,
301
+ "grad_norm": 1.1136761921157818,
302
+ "learning_rate": 9.262254990915427e-06,
303
+ "loss": 0.2785,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.9772727272727273,
308
+ "grad_norm": 0.9966948364040108,
309
+ "learning_rate": 9.223965245839367e-06,
310
+ "loss": 0.2597,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 1.0,
315
+ "grad_norm": 1.3791645613025802,
316
+ "learning_rate": 9.184790195536217e-06,
317
+ "loss": 0.2679,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 1.0227272727272727,
322
+ "grad_norm": 1.179410268749222,
323
+ "learning_rate": 9.144738050745129e-06,
324
+ "loss": 0.181,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 1.0454545454545454,
329
+ "grad_norm": 1.1815878438627367,
330
+ "learning_rate": 9.103817206036383e-06,
331
+ "loss": 0.1863,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 1.0681818181818181,
336
+ "grad_norm": 0.8101413228519797,
337
+ "learning_rate": 9.062036238051978e-06,
338
+ "loss": 0.1843,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 1.0909090909090908,
343
+ "grad_norm": 0.9532028129997955,
344
+ "learning_rate": 9.019403903708036e-06,
345
+ "loss": 0.1732,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 1.1136363636363635,
350
+ "grad_norm": 0.992565251308887,
351
+ "learning_rate": 8.975929138359423e-06,
352
+ "loss": 0.2059,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 1.1363636363636362,
357
+ "grad_norm": 0.9117404975458566,
358
+ "learning_rate": 8.931621053926998e-06,
359
+ "loss": 0.2237,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 1.1590909090909092,
364
+ "grad_norm": 0.8003178422788053,
365
+ "learning_rate": 8.886488936987817e-06,
366
+ "loss": 0.1334,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 1.1818181818181819,
371
+ "grad_norm": 1.2363455579654716,
372
+ "learning_rate": 8.840542246828763e-06,
373
+ "loss": 0.2168,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 1.2045454545454546,
378
+ "grad_norm": 1.2347708733857203,
379
+ "learning_rate": 8.793790613463956e-06,
380
+ "loss": 0.175,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 1.2272727272727273,
385
+ "grad_norm": 1.2303702228676998,
386
+ "learning_rate": 8.746243835616392e-06,
387
+ "loss": 0.1787,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 1.25,
392
+ "grad_norm": 1.2497191463046406,
393
+ "learning_rate": 8.697911878664222e-06,
394
+ "loss": 0.1739,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 1.2727272727272727,
399
+ "grad_norm": 1.3951861645180035,
400
+ "learning_rate": 8.648804872552092e-06,
401
+ "loss": 0.1847,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 1.2954545454545454,
406
+ "grad_norm": 1.245991460551998,
407
+ "learning_rate": 8.598933109667995e-06,
408
+ "loss": 0.1351,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 1.3181818181818181,
413
+ "grad_norm": 1.32907622391414,
414
+ "learning_rate": 8.548307042686093e-06,
415
+ "loss": 0.1546,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 1.3409090909090908,
420
+ "grad_norm": 1.4968562879002865,
421
+ "learning_rate": 8.496937282375912e-06,
422
+ "loss": 0.2356,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 1.3636363636363638,
427
+ "grad_norm": 0.9737096273924404,
428
+ "learning_rate": 8.444834595378434e-06,
429
+ "loss": 0.1335,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 1.3863636363636362,
434
+ "grad_norm": 1.3589415450025601,
435
+ "learning_rate": 8.3920099019495e-06,
436
+ "loss": 0.1363,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 1.4090909090909092,
441
+ "grad_norm": 0.8664968714166548,
442
+ "learning_rate": 8.33847427367102e-06,
443
+ "loss": 0.1056,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 1.4318181818181819,
448
+ "grad_norm": 1.0430422759251574,
449
+ "learning_rate": 8.284238931130476e-06,
450
+ "loss": 0.1827,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 1.4545454545454546,
455
+ "grad_norm": 1.0086301864952136,
456
+ "learning_rate": 8.229315241569177e-06,
457
+ "loss": 0.1398,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 1.4772727272727273,
462
+ "grad_norm": 0.9279203416268156,
463
+ "learning_rate": 8.173714716499801e-06,
464
+ "loss": 0.157,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 1.5,
469
+ "grad_norm": 1.1440300758673703,
470
+ "learning_rate": 8.117449009293668e-06,
471
+ "loss": 0.1685,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 1.5227272727272727,
476
+ "grad_norm": 1.1751439805537514,
477
+ "learning_rate": 8.060529912738316e-06,
478
+ "loss": 0.1572,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 1.5454545454545454,
483
+ "grad_norm": 1.0578357890566388,
484
+ "learning_rate": 8.002969356565822e-06,
485
+ "loss": 0.1598,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 1.5681818181818183,
490
+ "grad_norm": 1.3193928833299897,
491
+ "learning_rate": 7.94477940495245e-06,
492
+ "loss": 0.1854,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 1.5909090909090908,
497
+ "grad_norm": 1.2978218132135766,
498
+ "learning_rate": 7.885972253990104e-06,
499
+ "loss": 0.1743,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 1.6136363636363638,
504
+ "grad_norm": 1.0105258814245202,
505
+ "learning_rate": 7.826560229130132e-06,
506
+ "loss": 0.1987,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 1.6363636363636362,
511
+ "grad_norm": 1.004604979048799,
512
+ "learning_rate": 7.766555782600023e-06,
513
+ "loss": 0.1795,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 1.6590909090909092,
518
+ "grad_norm": 1.1179470989774414,
519
+ "learning_rate": 7.70597149079354e-06,
520
+ "loss": 0.1815,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 1.6818181818181817,
525
+ "grad_norm": 1.166448144503895,
526
+ "learning_rate": 7.644820051634813e-06,
527
+ "loss": 0.1617,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 1.7045454545454546,
532
+ "grad_norm": 0.9473819093100403,
533
+ "learning_rate": 7.5831142819169664e-06,
534
+ "loss": 0.1282,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 1.7272727272727273,
539
+ "grad_norm": 1.3707253122758942,
540
+ "learning_rate": 7.520867114615844e-06,
541
+ "loss": 0.1843,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 1.75,
546
+ "grad_norm": 0.8753193774986169,
547
+ "learning_rate": 7.458091596179359e-06,
548
+ "loss": 0.1205,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 1.7727272727272727,
553
+ "grad_norm": 0.7554237843642733,
554
+ "learning_rate": 7.394800883793087e-06,
555
+ "loss": 0.0983,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 1.7954545454545454,
560
+ "grad_norm": 1.1973348363016902,
561
+ "learning_rate": 7.331008242622637e-06,
562
+ "loss": 0.1848,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 1.8181818181818183,
567
+ "grad_norm": 1.1860354581221395,
568
+ "learning_rate": 7.266727043033386e-06,
569
+ "loss": 0.1527,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 1.8409090909090908,
574
+ "grad_norm": 1.4128677081083227,
575
+ "learning_rate": 7.201970757788172e-06,
576
+ "loss": 0.1602,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 1.8636363636363638,
581
+ "grad_norm": 1.296872182127621,
582
+ "learning_rate": 7.136752959223527e-06,
583
+ "loss": 0.2184,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 1.8863636363636362,
588
+ "grad_norm": 1.4836645345593107,
589
+ "learning_rate": 7.071087316405037e-06,
590
+ "loss": 0.2896,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 1.9090909090909092,
595
+ "grad_norm": 1.1976778490053432,
596
+ "learning_rate": 7.00498759226242e-06,
597
+ "loss": 0.1659,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 1.9318181818181817,
602
+ "grad_norm": 0.9975231348395474,
603
+ "learning_rate": 6.938467640704953e-06,
604
+ "loss": 0.1535,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 1.9545454545454546,
609
+ "grad_norm": 0.9648415033602733,
610
+ "learning_rate": 6.871541403717808e-06,
611
+ "loss": 0.1753,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 1.9772727272727273,
616
+ "grad_norm": 1.2019101492420445,
617
+ "learning_rate": 6.8042229084399325e-06,
618
+ "loss": 0.1562,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 2.0,
623
+ "grad_norm": 0.9443355724586839,
624
+ "learning_rate": 6.736526264224101e-06,
625
+ "loss": 0.1196,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 2.022727272727273,
630
+ "grad_norm": 1.000147993017032,
631
+ "learning_rate": 6.668465659679714e-06,
632
+ "loss": 0.1105,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 2.0454545454545454,
637
+ "grad_norm": 0.9077637361309605,
638
+ "learning_rate": 6.600055359698984e-06,
639
+ "loss": 0.1359,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 2.0681818181818183,
644
+ "grad_norm": 0.8899974700309011,
645
+ "learning_rate": 6.531309702467159e-06,
646
+ "loss": 0.1051,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 2.090909090909091,
651
+ "grad_norm": 0.7405665057218146,
652
+ "learning_rate": 6.462243096457352e-06,
653
+ "loss": 0.0949,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 2.1136363636363638,
658
+ "grad_norm": 0.9232739478624769,
659
+ "learning_rate": 6.392870017410665e-06,
660
+ "loss": 0.0869,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 2.1363636363636362,
665
+ "grad_norm": 0.907192376363368,
666
+ "learning_rate": 6.323205005302199e-06,
667
+ "loss": 0.085,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 2.159090909090909,
672
+ "grad_norm": 0.9510815353153362,
673
+ "learning_rate": 6.2532626612936035e-06,
674
+ "loss": 0.1041,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 2.1818181818181817,
679
+ "grad_norm": 1.0694010726357495,
680
+ "learning_rate": 6.18305764467281e-06,
681
+ "loss": 0.0933,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 2.2045454545454546,
686
+ "grad_norm": 0.9096286210344772,
687
+ "learning_rate": 6.112604669781572e-06,
688
+ "loss": 0.0672,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 2.227272727272727,
693
+ "grad_norm": 1.433917507625707,
694
+ "learning_rate": 6.041918502931473e-06,
695
+ "loss": 0.0879,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 2.25,
700
+ "grad_norm": 0.9531885718869322,
701
+ "learning_rate": 5.971013959309038e-06,
702
+ "loss": 0.0596,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 2.2727272727272725,
707
+ "grad_norm": 1.1923953651383123,
708
+ "learning_rate": 5.8999058998706046e-06,
709
+ "loss": 0.0788,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 2.2954545454545454,
714
+ "grad_norm": 0.9554826618737247,
715
+ "learning_rate": 5.828609228227603e-06,
716
+ "loss": 0.073,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 2.3181818181818183,
721
+ "grad_norm": 1.0620618620218882,
722
+ "learning_rate": 5.757138887522884e-06,
723
+ "loss": 0.0852,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 2.340909090909091,
728
+ "grad_norm": 1.1580458870328374,
729
+ "learning_rate": 5.685509857298781e-06,
730
+ "loss": 0.1011,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 2.3636363636363638,
735
+ "grad_norm": 1.5883148285084483,
736
+ "learning_rate": 5.613737150357528e-06,
737
+ "loss": 0.0791,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 2.3863636363636362,
742
+ "grad_norm": 1.2367508056402248,
743
+ "learning_rate": 5.541835809614704e-06,
744
+ "loss": 0.0654,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 2.409090909090909,
749
+ "grad_norm": 2.2791052878714653,
750
+ "learning_rate": 5.469820904946383e-06,
751
+ "loss": 0.087,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 2.4318181818181817,
756
+ "grad_norm": 1.2009177571989036,
757
+ "learning_rate": 5.397707530030621e-06,
758
+ "loss": 0.0754,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 2.4545454545454546,
763
+ "grad_norm": 1.24186865246545,
764
+ "learning_rate": 5.325510799183953e-06,
765
+ "loss": 0.0676,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 2.4772727272727275,
770
+ "grad_norm": 1.3626254215524685,
771
+ "learning_rate": 5.253245844193564e-06,
772
+ "loss": 0.0897,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 2.5,
777
+ "grad_norm": 1.2267940513161908,
778
+ "learning_rate": 5.180927811145818e-06,
779
+ "loss": 0.081,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 2.5227272727272725,
784
+ "grad_norm": 1.0280554800159314,
785
+ "learning_rate": 5.108571857251754e-06,
786
+ "loss": 0.0998,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 2.5454545454545454,
791
+ "grad_norm": 1.198523585670272,
792
+ "learning_rate": 5.036193147670286e-06,
793
+ "loss": 0.0943,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 2.5681818181818183,
798
+ "grad_norm": 1.0299128746931727,
799
+ "learning_rate": 4.963806852329715e-06,
800
+ "loss": 0.0867,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 2.590909090909091,
805
+ "grad_norm": 1.0781930889668705,
806
+ "learning_rate": 4.891428142748247e-06,
807
+ "loss": 0.0935,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 2.6136363636363638,
812
+ "grad_norm": 1.3870007299043179,
813
+ "learning_rate": 4.819072188854183e-06,
814
+ "loss": 0.1038,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 2.6363636363636362,
819
+ "grad_norm": 1.2763920896506822,
820
+ "learning_rate": 4.746754155806437e-06,
821
+ "loss": 0.1066,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 2.659090909090909,
826
+ "grad_norm": 1.1553721597437976,
827
+ "learning_rate": 4.674489200816051e-06,
828
+ "loss": 0.0727,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 2.6818181818181817,
833
+ "grad_norm": 1.2201292764615486,
834
+ "learning_rate": 4.602292469969381e-06,
835
+ "loss": 0.1029,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 2.7045454545454546,
840
+ "grad_norm": 1.0182353763504708,
841
+ "learning_rate": 4.5301790950536175e-06,
842
+ "loss": 0.081,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 2.7272727272727275,
847
+ "grad_norm": 0.8638534963225072,
848
+ "learning_rate": 4.458164190385297e-06,
849
+ "loss": 0.0743,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 2.75,
854
+ "grad_norm": 1.179392830465865,
855
+ "learning_rate": 4.386262849642474e-06,
856
+ "loss": 0.1008,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 2.7727272727272725,
861
+ "grad_norm": 0.8679825281753464,
862
+ "learning_rate": 4.31449014270122e-06,
863
+ "loss": 0.0493,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 2.7954545454545454,
868
+ "grad_norm": 1.1253980579124658,
869
+ "learning_rate": 4.2428611124771184e-06,
870
+ "loss": 0.0848,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 2.8181818181818183,
875
+ "grad_norm": 1.0356630565413245,
876
+ "learning_rate": 4.171390771772399e-06,
877
+ "loss": 0.068,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 2.840909090909091,
882
+ "grad_norm": 1.3477554175880992,
883
+ "learning_rate": 4.100094100129396e-06,
884
+ "loss": 0.1043,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 2.8636363636363638,
889
+ "grad_norm": 0.97866201549117,
890
+ "learning_rate": 4.028986040690963e-06,
891
+ "loss": 0.0847,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 2.8863636363636362,
896
+ "grad_norm": 1.1349756610536412,
897
+ "learning_rate": 3.958081497068528e-06,
898
+ "loss": 0.0792,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 2.909090909090909,
903
+ "grad_norm": 0.9146117017482877,
904
+ "learning_rate": 3.887395330218429e-06,
905
+ "loss": 0.0611,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 2.9318181818181817,
910
+ "grad_norm": 1.0807764635079844,
911
+ "learning_rate": 3.816942355327191e-06,
912
+ "loss": 0.0904,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 2.9545454545454546,
917
+ "grad_norm": 1.1271897510030453,
918
+ "learning_rate": 3.7467373387063973e-06,
919
+ "loss": 0.0769,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 2.9772727272727275,
924
+ "grad_norm": 1.079134591854598,
925
+ "learning_rate": 3.6767949946978026e-06,
926
+ "loss": 0.0936,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 3.0,
931
+ "grad_norm": 1.0766678958231195,
932
+ "learning_rate": 3.607129982589337e-06,
933
+ "loss": 0.0836,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 3.022727272727273,
938
+ "grad_norm": 0.6602194945121888,
939
+ "learning_rate": 3.5377569035426494e-06,
940
+ "loss": 0.0432,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 3.0454545454545454,
945
+ "grad_norm": 0.9207788970106073,
946
+ "learning_rate": 3.468690297532843e-06,
947
+ "loss": 0.0614,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 3.0681818181818183,
952
+ "grad_norm": 0.7792864367119448,
953
+ "learning_rate": 3.3999446403010156e-06,
954
+ "loss": 0.044,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 3.090909090909091,
959
+ "grad_norm": 0.7824193339459661,
960
+ "learning_rate": 3.331534340320287e-06,
961
+ "loss": 0.0299,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 3.1136363636363638,
966
+ "grad_norm": 1.035803750265937,
967
+ "learning_rate": 3.2634737357758994e-06,
968
+ "loss": 0.0481,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 3.1363636363636362,
973
+ "grad_norm": 0.7826621695998633,
974
+ "learning_rate": 3.1957770915600696e-06,
975
+ "loss": 0.0388,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 3.159090909090909,
980
+ "grad_norm": 0.6958054164558033,
981
+ "learning_rate": 3.1284585962821957e-06,
982
+ "loss": 0.0351,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 3.1818181818181817,
987
+ "grad_norm": 0.9734916299688532,
988
+ "learning_rate": 3.0615323592950495e-06,
989
+ "loss": 0.0458,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 3.2045454545454546,
994
+ "grad_norm": 0.9750452432170936,
995
+ "learning_rate": 2.995012407737581e-06,
996
+ "loss": 0.044,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 3.227272727272727,
1001
+ "grad_norm": 1.1459789012585446,
1002
+ "learning_rate": 2.9289126835949657e-06,
1003
+ "loss": 0.0663,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 3.25,
1008
+ "grad_norm": 1.1249770693101788,
1009
+ "learning_rate": 2.8632470407764746e-06,
1010
+ "loss": 0.0431,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 3.2727272727272725,
1015
+ "grad_norm": 0.9864994227169254,
1016
+ "learning_rate": 2.7980292422118282e-06,
1017
+ "loss": 0.0606,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 3.2954545454545454,
1022
+ "grad_norm": 1.0092348933533415,
1023
+ "learning_rate": 2.733272956966615e-06,
1024
+ "loss": 0.0538,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 3.3181818181818183,
1029
+ "grad_norm": 1.39535927779365,
1030
+ "learning_rate": 2.6689917573773615e-06,
1031
+ "loss": 0.0531,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 3.340909090909091,
1036
+ "grad_norm": 0.9511300286527435,
1037
+ "learning_rate": 2.605199116206912e-06,
1038
+ "loss": 0.0382,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 3.3636363636363638,
1043
+ "grad_norm": 1.2541730166057663,
1044
+ "learning_rate": 2.5419084038206422e-06,
1045
+ "loss": 0.0419,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 3.3863636363636362,
1050
+ "grad_norm": 1.0095638491761618,
1051
+ "learning_rate": 2.4791328853841577e-06,
1052
+ "loss": 0.0434,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 3.409090909090909,
1057
+ "grad_norm": 0.8262732933318356,
1058
+ "learning_rate": 2.416885718083035e-06,
1059
+ "loss": 0.0322,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 3.4318181818181817,
1064
+ "grad_norm": 0.8137374498919325,
1065
+ "learning_rate": 2.3551799483651894e-06,
1066
+ "loss": 0.0308,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 3.4545454545454546,
1071
+ "grad_norm": 0.8629006626767369,
1072
+ "learning_rate": 2.294028509206461e-06,
1073
+ "loss": 0.0459,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 3.4772727272727275,
1078
+ "grad_norm": 0.75511924638048,
1079
+ "learning_rate": 2.2334442173999794e-06,
1080
+ "loss": 0.0304,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 3.5,
1085
+ "grad_norm": 0.765294235454733,
1086
+ "learning_rate": 2.17343977086987e-06,
1087
+ "loss": 0.0436,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 3.5227272727272725,
1092
+ "grad_norm": 0.8507628894917487,
1093
+ "learning_rate": 2.114027746009897e-06,
1094
+ "loss": 0.0277,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 3.5454545454545454,
1099
+ "grad_norm": 1.1371497063801275,
1100
+ "learning_rate": 2.055220595047551e-06,
1101
+ "loss": 0.0463,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 3.5681818181818183,
1106
+ "grad_norm": 1.0468638172133997,
1107
+ "learning_rate": 1.9970306434341806e-06,
1108
+ "loss": 0.0354,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 3.590909090909091,
1113
+ "grad_norm": 0.8300360380363072,
1114
+ "learning_rate": 1.9394700872616856e-06,
1115
+ "loss": 0.0377,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 3.6136363636363638,
1120
+ "grad_norm": 1.2431358466370912,
1121
+ "learning_rate": 1.8825509907063328e-06,
1122
+ "loss": 0.0407,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 3.6363636363636362,
1127
+ "grad_norm": 1.0116784265871086,
1128
+ "learning_rate": 1.826285283500201e-06,
1129
+ "loss": 0.0506,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 3.659090909090909,
1134
+ "grad_norm": 0.9351206425735656,
1135
+ "learning_rate": 1.770684758430824e-06,
1136
+ "loss": 0.0383,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 3.6818181818181817,
1141
+ "grad_norm": 0.7608293362619839,
1142
+ "learning_rate": 1.7157610688695248e-06,
1143
+ "loss": 0.0251,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 3.7045454545454546,
1148
+ "grad_norm": 1.0486186821729864,
1149
+ "learning_rate": 1.6615257263289809e-06,
1150
+ "loss": 0.0354,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 3.7272727272727275,
1155
+ "grad_norm": 0.8511206701235292,
1156
+ "learning_rate": 1.607990098050501e-06,
1157
+ "loss": 0.0375,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 3.75,
1162
+ "grad_norm": 0.9639257216156043,
1163
+ "learning_rate": 1.555165404621567e-06,
1164
+ "loss": 0.0406,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 3.7727272727272725,
1169
+ "grad_norm": 0.9665035321570787,
1170
+ "learning_rate": 1.5030627176240903e-06,
1171
+ "loss": 0.0386,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 3.7954545454545454,
1176
+ "grad_norm": 0.8935090470273086,
1177
+ "learning_rate": 1.45169295731391e-06,
1178
+ "loss": 0.0351,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 3.8181818181818183,
1183
+ "grad_norm": 1.1337183807356483,
1184
+ "learning_rate": 1.4010668903320068e-06,
1185
+ "loss": 0.0267,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 3.840909090909091,
1190
+ "grad_norm": 1.0191173211814406,
1191
+ "learning_rate": 1.3511951274479096e-06,
1192
+ "loss": 0.03,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 3.8636363636363638,
1197
+ "grad_norm": 0.8969739545223467,
1198
+ "learning_rate": 1.3020881213357783e-06,
1199
+ "loss": 0.0433,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 3.8863636363636362,
1204
+ "grad_norm": 0.8374168117834856,
1205
+ "learning_rate": 1.2537561643836087e-06,
1206
+ "loss": 0.0272,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 3.909090909090909,
1211
+ "grad_norm": 1.0969039495955495,
1212
+ "learning_rate": 1.2062093865360458e-06,
1213
+ "loss": 0.052,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 3.9318181818181817,
1218
+ "grad_norm": 0.7906472210562279,
1219
+ "learning_rate": 1.1594577531712392e-06,
1220
+ "loss": 0.0492,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 3.9545454545454546,
1225
+ "grad_norm": 0.8214507384737139,
1226
+ "learning_rate": 1.1135110630121837e-06,
1227
+ "loss": 0.036,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 3.9772727272727275,
1232
+ "grad_norm": 0.8916597776872088,
1233
+ "learning_rate": 1.0683789460730037e-06,
1234
+ "loss": 0.0358,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 4.0,
1239
+ "grad_norm": 0.9910806202679314,
1240
+ "learning_rate": 1.0240708616405788e-06,
1241
+ "loss": 0.0471,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 4.0227272727272725,
1246
+ "grad_norm": 0.8017333339630908,
1247
+ "learning_rate": 9.80596096291967e-07,
1248
+ "loss": 0.0421,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 4.045454545454546,
1253
+ "grad_norm": 0.6088709030309449,
1254
+ "learning_rate": 9.379637619480236e-07,
1255
+ "loss": 0.0197,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 4.068181818181818,
1260
+ "grad_norm": 0.5056506758915681,
1261
+ "learning_rate": 8.961827939636198e-07,
1262
+ "loss": 0.0161,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 4.090909090909091,
1267
+ "grad_norm": 0.7756562125854171,
1268
+ "learning_rate": 8.552619492548736e-07,
1269
+ "loss": 0.0268,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 4.113636363636363,
1274
+ "grad_norm": 0.5669855251712181,
1275
+ "learning_rate": 8.15209804463783e-07,
1276
+ "loss": 0.0202,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 4.136363636363637,
1281
+ "grad_norm": 0.6473780755422711,
1282
+ "learning_rate": 7.760347541606339e-07,
1283
+ "loss": 0.0307,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 4.159090909090909,
1288
+ "grad_norm": 0.5361573992028992,
1289
+ "learning_rate": 7.377450090845733e-07,
1290
+ "loss": 0.0215,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 4.181818181818182,
1295
+ "grad_norm": 0.6191327927742057,
1296
+ "learning_rate": 7.003485944227162e-07,
1297
+ "loss": 0.0297,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 4.204545454545454,
1302
+ "grad_norm": 0.7740351242770065,
1303
+ "learning_rate": 6.638533481281323e-07,
1304
+ "loss": 0.0277,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 4.2272727272727275,
1309
+ "grad_norm": 0.8036694531204502,
1310
+ "learning_rate": 6.282669192770896e-07,
1311
+ "loss": 0.0337,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 4.25,
1316
+ "grad_norm": 0.5569549110731221,
1317
+ "learning_rate": 5.935967664658682e-07,
1318
+ "loss": 0.023,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 4.2727272727272725,
1323
+ "grad_norm": 0.43268894985216455,
1324
+ "learning_rate": 5.598501562475111e-07,
1325
+ "loss": 0.015,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 4.295454545454546,
1330
+ "grad_norm": 0.5798546765255864,
1331
+ "learning_rate": 5.270341616088153e-07,
1332
+ "loss": 0.0161,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 4.318181818181818,
1337
+ "grad_norm": 0.667306809133945,
1338
+ "learning_rate": 4.951556604879049e-07,
1339
+ "loss": 0.0207,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 4.340909090909091,
1344
+ "grad_norm": 0.5559259388326303,
1345
+ "learning_rate": 4.6422133433266513e-07,
1346
+ "loss": 0.0154,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 4.363636363636363,
1351
+ "grad_norm": 0.48805637239261085,
1352
+ "learning_rate": 4.342376667003845e-07,
1353
+ "loss": 0.0133,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 4.386363636363637,
1358
+ "grad_norm": 0.633760717360346,
1359
+ "learning_rate": 4.05210941898847e-07,
1360
+ "loss": 0.0166,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 4.409090909090909,
1365
+ "grad_norm": 0.4941494223196582,
1366
+ "learning_rate": 3.771472436692053e-07,
1367
+ "loss": 0.0136,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 4.431818181818182,
1372
+ "grad_norm": 0.694276868602463,
1373
+ "learning_rate": 3.500524539108807e-07,
1374
+ "loss": 0.0218,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 4.454545454545454,
1379
+ "grad_norm": 0.588819670846474,
1380
+ "learning_rate": 3.239322514487686e-07,
1381
+ "loss": 0.0176,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 4.4772727272727275,
1386
+ "grad_norm": 0.5265383444966927,
1387
+ "learning_rate": 2.9879211084301194e-07,
1388
+ "loss": 0.0151,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 4.5,
1393
+ "grad_norm": 0.44878162692299606,
1394
+ "learning_rate": 2.7463730124157706e-07,
1395
+ "loss": 0.014,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 4.5227272727272725,
1400
+ "grad_norm": 0.6569401749445752,
1401
+ "learning_rate": 2.5147288527588964e-07,
1402
+ "loss": 0.0164,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 4.545454545454545,
1407
+ "grad_norm": 1.2770158126939868,
1408
+ "learning_rate": 2.2930371799975593e-07,
1409
+ "loss": 0.0218,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 4.568181818181818,
1414
+ "grad_norm": 0.5855843139833002,
1415
+ "learning_rate": 2.0813444587178156e-07,
1416
+ "loss": 0.0168,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 4.590909090909091,
1421
+ "grad_norm": 0.6376332689792783,
1422
+ "learning_rate": 1.8796950578151785e-07,
1423
+ "loss": 0.0152,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 4.613636363636363,
1428
+ "grad_norm": 0.6329781274553996,
1429
+ "learning_rate": 1.6881312411953288e-07,
1430
+ "loss": 0.0111,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 4.636363636363637,
1435
+ "grad_norm": 0.9765159855301974,
1436
+ "learning_rate": 1.5066931589159118e-07,
1437
+ "loss": 0.0278,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 4.659090909090909,
1442
+ "grad_norm": 0.6973740006107351,
1443
+ "learning_rate": 1.3354188387715017e-07,
1444
+ "loss": 0.022,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 4.681818181818182,
1449
+ "grad_norm": 0.5499873946022198,
1450
+ "learning_rate": 1.174344178323289e-07,
1451
+ "loss": 0.0155,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 4.704545454545455,
1456
+ "grad_norm": 0.7453329709429668,
1457
+ "learning_rate": 1.0235029373752758e-07,
1458
+ "loss": 0.0274,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 4.7272727272727275,
1463
+ "grad_norm": 0.4712400999164701,
1464
+ "learning_rate": 8.829267308985535e-08,
1465
+ "loss": 0.0128,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 4.75,
1470
+ "grad_norm": 0.791960861976085,
1471
+ "learning_rate": 7.526450224050407e-08,
1472
+ "loss": 0.0206,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 4.7727272727272725,
1477
+ "grad_norm": 0.8100989026594698,
1478
+ "learning_rate": 6.326851177722304e-08,
1479
+ "loss": 0.026,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 4.795454545454545,
1484
+ "grad_norm": 0.5698845908406204,
1485
+ "learning_rate": 5.230721595201049e-08,
1486
+ "loss": 0.0115,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 4.818181818181818,
1491
+ "grad_norm": 0.7463531903553184,
1492
+ "learning_rate": 4.2382912154150244e-08,
1493
+ "loss": 0.0178,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 4.840909090909091,
1498
+ "grad_norm": 0.7813627200692648,
1499
+ "learning_rate": 3.3497680428697943e-08,
1500
+ "loss": 0.0163,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 4.863636363636363,
1505
+ "grad_norm": 0.66982841564412,
1506
+ "learning_rate": 2.5653383040524228e-08,
1507
+ "loss": 0.0186,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 4.886363636363637,
1512
+ "grad_norm": 0.4637052800834321,
1513
+ "learning_rate": 1.8851664083999742e-08,
1514
+ "loss": 0.013,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 4.909090909090909,
1519
+ "grad_norm": 0.43304208586446546,
1520
+ "learning_rate": 1.3093949138406892e-08,
1521
+ "loss": 0.0081,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 4.931818181818182,
1526
+ "grad_norm": 0.8973836308599885,
1527
+ "learning_rate": 8.381444969151608e-09,
1528
+ "loss": 0.0276,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 4.954545454545455,
1533
+ "grad_norm": 0.6757448220546857,
1534
+ "learning_rate": 4.7151392748379095e-09,
1535
+ "loss": 0.0185,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 4.9772727272727275,
1540
+ "grad_norm": 0.6378204095313933,
1541
+ "learning_rate": 2.0958004802529297e-09,
1542
+ "loss": 0.0239,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 5.0,
1547
+ "grad_norm": 0.7520281673571331,
1548
+ "learning_rate": 5.239775753129728e-10,
1549
+ "loss": 0.0294,
1550
+ "step": 220
1551
+ }
1552
+ ],
1553
+ "logging_steps": 1,
1554
+ "max_steps": 220,
1555
+ "num_input_tokens_seen": 0,
1556
+ "num_train_epochs": 5,
1557
+ "save_steps": 75,
1558
+ "stateful_callbacks": {
1559
+ "TrainerControl": {
1560
+ "args": {
1561
+ "should_epoch_stop": false,
1562
+ "should_evaluate": false,
1563
+ "should_log": false,
1564
+ "should_save": true,
1565
+ "should_training_stop": true
1566
+ },
1567
+ "attributes": {}
1568
+ }
1569
+ },
1570
+ "total_flos": 14632660697088.0,
1571
+ "train_batch_size": 2,
1572
+ "trial_name": null,
1573
+ "trial_params": null
1574
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebfb7cfd9b409f81947d5c40d590d787f73e698d70b3a6257639fa43608d9cb0
3
+ size 7608
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)