diff --git "a/vae_encoder.xml" "b/vae_encoder.xml" --- "a/vae_encoder.xml" +++ "b/vae_encoder.xml" @@ -1,10 +1,10 @@ -<?xml version="1.0" ?> +<?xml version="1.0"?> <net name="torch_jit" version="11"> <layers> <layer id="0" name="init_image" type="Parameter" version="opset1"> - <data shape="1,3,512,512" element_type="f32"/> + <data shape="1,3,512,512" element_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="init_image"/> + <attribute name="old_api_map_element_type" version="0" value="f16" /> </rt_info> <output> <port id="0" precision="FP32" names="init_image"> @@ -15,33 +15,70 @@ </port> </output> </layer> - <layer id="1" name="Constant_13488" type="Const" version="opset1"> - <data element_type="f32" shape="1, 1, 512" offset="0" size="2048"/> + <layer id="1" name="Constant_155099_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 1, 512" offset="0" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>1</dim> <dim>512</dim> </port> </output> </layer> - <layer id="2" name="Constant_13483" type="Const" version="opset1"> - <data element_type="f32" shape="1, 1, 512" offset="2048" size="2048"/> + <layer id="2" name="Constant_155099" type="Convert" version="opset1"> + <data destination_type="f32" /> + <rt_info> + <attribute name="decompression" version="0" /> + </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </input> <output> - <port id="0" precision="FP32"> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="3" name="Constant_155094_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 1, 512" offset="1024" size="1024" /> + <output> + <port id="0" precision="FP16"> <dim>1</dim> <dim>1</dim> <dim>512</dim> </port> </output> </layer> - <layer id="3" name="m.encoder.conv_in.weight" type="Const" version="opset1"> - <data element_type="f32" shape="128, 3, 3, 3" offset="4096" size="13824"/> + <layer id="4" name="Constant_155094" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.conv_in.weight"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="5" name="vae.encoder.conv_in.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="128, 3, 3, 3" offset="2048" size="6912" /> <output> - <port id="0" precision="FP32" names="m.encoder.conv_in.weight"> + <port id="0" precision="FP16"> <dim>128</dim> <dim>3</dim> <dim>3</dim> @@ -49,11 +86,30 @@ </port> </output> </layer> - <layer id="4" name="Convolution_114" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="6" name="vae.encoder.conv_in.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_114"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.conv_in.weight"> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="7" name="/encoder/conv_in/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -77,10 +133,10 @@ </port> </output> </layer> - <layer id="5" name="Reshape_134" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="17920" size="512"/> + <layer id="8" name="Reshape_117418_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="8960" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -88,11 +144,30 @@ </port> </output> </layer> - <layer id="6" name="onnx::Cast_249" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="9" name="Reshape_117418" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_133, Reshape_134, input, onnx::Cast_249"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="10" name="/encoder/conv_in/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -108,7 +183,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input,onnx::Cast_249"> + <port id="2" precision="FP32" names="/encoder/conv_in/Conv_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -116,22 +191,16 @@ </port> </output> </layer> - <layer id="7" name="onnx::Reshape_251" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_251"/> - </rt_info> + <layer id="11" name="/encoder/down_blocks.0/resnets.0/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_251"> + <port id="0" precision="I64" names="/encoder/down_blocks.0/resnets.0/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="8" name="onnx::InstanceNormalization_252" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_252"/> - </rt_info> + <layer id="12" name="/encoder/down_blocks.0/resnets.0/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -144,29 +213,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_252"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>1048576</dim> </port> </output> </layer> - <layer id="9" name="Constant_172" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_172"/> - </rt_info> + <layer id="13" name="Constant_117455" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="10" name="MVN_173" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_192, Concat_237, MVN_173, Multiply_220, Reshape_193, Reshape_238, onnx::Reshape_255"/> - </rt_info> + <layer id="14" name="MVN_117456" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -178,18 +241,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_255"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>1048576</dim> </port> </output> </layer> - <layer id="11" name="onnx::Reshape_256" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_256"/> - </rt_info> + <layer id="15" name="/encoder/down_blocks.0/resnets.0/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -199,16 +259,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_256"> + <port id="1" precision="I64" names="/encoder/down_blocks.0/resnets.0/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="12" name="onnx::Mul_257" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_257"/> - </rt_info> + <layer id="16" name="/encoder/down_blocks.0/resnets.0/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -220,7 +277,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_257"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -228,10 +285,10 @@ </port> </output> </layer> - <layer id="13" name="Constant_13445" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="18464" size="512"/> + <layer id="17" name="Constant_155056_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="9248" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -239,11 +296,30 @@ </port> </output> </layer> - <layer id="14" name="onnx::Add_260" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="18" name="Constant_155056" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_260"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="19" name="/encoder/down_blocks.0/resnets.0/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -259,7 +335,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_260"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm1/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -267,10 +343,10 @@ </port> </output> </layer> - <layer id="15" name="Constant_13446" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="18976" size="512"/> + <layer id="20" name="Constant_155057_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="9504" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -278,11 +354,30 @@ </port> </output> </layer> - <layer id="16" name="onnx::Cast_263" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="21" name="Constant_155057" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.4, onnx::Cast_263"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="22" name="/encoder/down_blocks.0/resnets.0/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -298,7 +393,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.4,onnx::Cast_263"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm1/Add_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -306,10 +401,7 @@ </port> </output> </layer> - <layer id="17" name="input.8" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.8, onnx::Mul_265"/> - </rt_info> + <layer id="23" name="/encoder/down_blocks.0/resnets.0/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -319,7 +411,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.8"> + <port id="1" precision="FP32" names="/encoder/down_blocks.0/resnets.0/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -327,13 +419,10 @@ </port> </output> </layer> - <layer id="18" name="m.encoder.down_blocks.0.resnets.0.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="128, 128, 3, 3" offset="19488" size="589824"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.0.resnets.0.conv1.weight"/> - </rt_info> + <layer id="24" name="vae.encoder.down_blocks.0.resnets.0.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="128, 128, 3, 3" offset="9760" size="294912" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.0.resnets.0.conv1.weight"> + <port id="0" precision="FP16"> <dim>128</dim> <dim>128</dim> <dim>3</dim> @@ -341,11 +430,30 @@ </port> </output> </layer> - <layer id="19" name="Convolution_278" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="25" name="vae.encoder.down_blocks.0.resnets.0.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_278"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.0.resnets.0.conv1.weight"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="26" name="/encoder/down_blocks.0/resnets.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -369,10 +477,10 @@ </port> </output> </layer> - <layer id="20" name="Reshape_298" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="609312" size="512"/> + <layer id="27" name="Reshape_117580_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="304672" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -380,11 +488,30 @@ </port> </output> </layer> - <layer id="21" name="onnx::Cast_267" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="28" name="Reshape_117580" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_297, Reshape_298, input.12, onnx::Cast_267"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="29" name="/encoder/down_blocks.0/resnets.0/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -400,7 +527,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.12,onnx::Cast_267"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/conv1/Conv_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -408,22 +535,16 @@ </port> </output> </layer> - <layer id="22" name="onnx::Reshape_269" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_269"/> - </rt_info> + <layer id="30" name="/encoder/down_blocks.0/resnets.0/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_269"> + <port id="0" precision="I64" names="/encoder/down_blocks.0/resnets.0/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="23" name="onnx::InstanceNormalization_270" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_270"/> - </rt_info> + <layer id="31" name="/encoder/down_blocks.0/resnets.0/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -436,29 +557,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_270"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>1048576</dim> </port> </output> </layer> - <layer id="24" name="Constant_336" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_336"/> - </rt_info> + <layer id="32" name="Constant_117617" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="25" name="MVN_337" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_356, Concat_401, MVN_337, Multiply_384, Reshape_357, Reshape_402, onnx::Reshape_273"/> - </rt_info> + <layer id="33" name="MVN_117618" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -470,18 +585,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_273"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>1048576</dim> </port> </output> </layer> - <layer id="26" name="onnx::Reshape_274" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_274"/> - </rt_info> + <layer id="34" name="/encoder/down_blocks.0/resnets.0/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -491,16 +603,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_274"> + <port id="1" precision="I64" names="/encoder/down_blocks.0/resnets.0/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="27" name="onnx::Mul_275" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_275"/> - </rt_info> + <layer id="35" name="/encoder/down_blocks.0/resnets.0/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -512,7 +621,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_275"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -520,10 +629,10 @@ </port> </output> </layer> - <layer id="28" name="Constant_13447" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="609824" size="512"/> + <layer id="36" name="Constant_155058_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="304928" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -531,11 +640,30 @@ </port> </output> </layer> - <layer id="29" name="onnx::Add_278" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="37" name="Constant_155058" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_278"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="38" name="/encoder/down_blocks.0/resnets.0/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -551,7 +679,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_278"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm2/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -559,10 +687,10 @@ </port> </output> </layer> - <layer id="30" name="Constant_13448" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="610336" size="512"/> + <layer id="39" name="Constant_155059_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="305184" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -570,11 +698,30 @@ </port> </output> </layer> - <layer id="31" name="onnx::Cast_281" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="40" name="Constant_155059" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.16, onnx::Cast_281"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="41" name="/encoder/down_blocks.0/resnets.0/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -590,7 +737,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.16,onnx::Cast_281"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/norm2/Add_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -598,10 +745,7 @@ </port> </output> </layer> - <layer id="32" name="input.20" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.20, onnx::Mul_283"/> - </rt_info> + <layer id="42" name="/encoder/down_blocks.0/resnets.0/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -611,7 +755,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.20"> + <port id="1" precision="FP32" names="/encoder/down_blocks.0/resnets.0/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -619,13 +763,10 @@ </port> </output> </layer> - <layer id="33" name="m.encoder.down_blocks.0.resnets.0.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="128, 128, 3, 3" offset="610848" size="589824"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.0.resnets.0.conv2.weight"/> - </rt_info> + <layer id="43" name="vae.encoder.down_blocks.0.resnets.0.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="128, 128, 3, 3" offset="305440" size="294912" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.0.resnets.0.conv2.weight"> + <port id="0" precision="FP16"> <dim>128</dim> <dim>128</dim> <dim>3</dim> @@ -633,11 +774,30 @@ </port> </output> </layer> - <layer id="34" name="Convolution_442" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="44" name="vae.encoder.down_blocks.0.resnets.0.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_442"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.0.resnets.0.conv2.weight"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="45" name="/encoder/down_blocks.0/resnets.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -661,10 +821,10 @@ </port> </output> </layer> - <layer id="35" name="Reshape_462" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="1200672" size="512"/> + <layer id="46" name="Reshape_117742_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="600352" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -672,11 +832,30 @@ </port> </output> </layer> - <layer id="36" name="onnx::Add_285" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="47" name="Reshape_117742" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_461, Reshape_462, onnx::Add_285"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="48" name="/encoder/down_blocks.0/resnets.0/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -692,7 +871,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_285"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/conv2/Conv_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -700,11 +879,8 @@ </port> </output> </layer> - <layer id="37" name="onnx::Div_286" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.24, onnx::Cast_288, onnx::Div_286"/> - </rt_info> + <layer id="49" name="/encoder/down_blocks.0/resnets.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -720,7 +896,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.24,onnx::Cast_288,onnx::Div_286"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.0/Add_output_0,/encoder/down_blocks.0/resnets.0/Div_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -728,22 +904,16 @@ </port> </output> </layer> - <layer id="38" name="onnx::Reshape_290" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_290"/> - </rt_info> + <layer id="50" name="/encoder/down_blocks.0/resnets.1/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_290"> + <port id="0" precision="I64" names="/encoder/down_blocks.0/resnets.1/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="39" name="onnx::InstanceNormalization_291" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_291"/> - </rt_info> + <layer id="51" name="/encoder/down_blocks.0/resnets.1/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -756,29 +926,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_291"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>1048576</dim> </port> </output> </layer> - <layer id="40" name="Constant_503" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_503"/> - </rt_info> + <layer id="52" name="Constant_117782" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="41" name="MVN_504" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_523, Concat_568, MVN_504, Multiply_551, Reshape_524, Reshape_569, onnx::Reshape_294"/> - </rt_info> + <layer id="53" name="MVN_117783" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -790,18 +954,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_294"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>1048576</dim> </port> </output> </layer> - <layer id="42" name="onnx::Reshape_295" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_295"/> - </rt_info> + <layer id="54" name="/encoder/down_blocks.0/resnets.1/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -811,16 +972,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_295"> + <port id="1" precision="I64" names="/encoder/down_blocks.0/resnets.1/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="43" name="onnx::Mul_296" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_296"/> - </rt_info> + <layer id="55" name="/encoder/down_blocks.0/resnets.1/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -832,7 +990,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_296"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -840,10 +998,10 @@ </port> </output> </layer> - <layer id="44" name="Constant_13449" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="1201184" size="512"/> + <layer id="56" name="Constant_155060_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="600608" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -851,27 +1009,46 @@ </port> </output> </layer> - <layer id="45" name="onnx::Add_299" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="57" name="Constant_155060" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_299"/> + <attribute name="decompression" version="0" /> </rt_info> <input> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> - <dim>512</dim> - <dim>512</dim> + <dim>1</dim> + <dim>1</dim> </port> + </input> + <output> <port id="1" precision="FP32"> <dim>1</dim> <dim>128</dim> <dim>1</dim> <dim>1</dim> </port> - </input> - <output> - <port id="2" precision="FP32" names="onnx::Add_299"> + </output> + </layer> + <layer id="58" name="/encoder/down_blocks.0/resnets.1/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>512</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm1/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -879,10 +1056,10 @@ </port> </output> </layer> - <layer id="46" name="Constant_13450" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="1201696" size="512"/> + <layer id="59" name="Constant_155061_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="600864" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -890,11 +1067,30 @@ </port> </output> </layer> - <layer id="47" name="onnx::Cast_302" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="60" name="Constant_155061" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.28, onnx::Cast_302"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="61" name="/encoder/down_blocks.0/resnets.1/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -910,7 +1106,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.28,onnx::Cast_302"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm1/Add_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -918,10 +1114,7 @@ </port> </output> </layer> - <layer id="48" name="input.32" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.32, onnx::Mul_304"/> - </rt_info> + <layer id="62" name="/encoder/down_blocks.0/resnets.1/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -931,7 +1124,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.32"> + <port id="1" precision="FP32" names="/encoder/down_blocks.0/resnets.1/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -939,13 +1132,10 @@ </port> </output> </layer> - <layer id="49" name="m.encoder.down_blocks.0.resnets.1.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="128, 128, 3, 3" offset="1202208" size="589824"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.0.resnets.1.conv1.weight"/> - </rt_info> + <layer id="63" name="vae.encoder.down_blocks.0.resnets.1.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="128, 128, 3, 3" offset="601120" size="294912" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.0.resnets.1.conv1.weight"> + <port id="0" precision="FP16"> <dim>128</dim> <dim>128</dim> <dim>3</dim> @@ -953,11 +1143,30 @@ </port> </output> </layer> - <layer id="50" name="Convolution_609" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="64" name="vae.encoder.down_blocks.0.resnets.1.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_609"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.0.resnets.1.conv1.weight"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="65" name="/encoder/down_blocks.0/resnets.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -981,10 +1190,10 @@ </port> </output> </layer> - <layer id="51" name="Reshape_629" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="1792032" size="512"/> + <layer id="66" name="Reshape_117907_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="896032" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -992,11 +1201,30 @@ </port> </output> </layer> - <layer id="52" name="onnx::Cast_306" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="67" name="Reshape_117907" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_628, Reshape_629, input.36, onnx::Cast_306"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="68" name="/encoder/down_blocks.0/resnets.1/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1012,7 +1240,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.36,onnx::Cast_306"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/conv1/Conv_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -1020,22 +1248,16 @@ </port> </output> </layer> - <layer id="53" name="onnx::Reshape_308" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_308"/> - </rt_info> + <layer id="69" name="/encoder/down_blocks.0/resnets.1/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_308"> + <port id="0" precision="I64" names="/encoder/down_blocks.0/resnets.1/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="54" name="onnx::InstanceNormalization_309" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_309"/> - </rt_info> + <layer id="70" name="/encoder/down_blocks.0/resnets.1/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1048,29 +1270,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_309"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>1048576</dim> </port> </output> </layer> - <layer id="55" name="Constant_667" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_667"/> - </rt_info> + <layer id="71" name="Constant_117944" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="56" name="MVN_668" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_687, Concat_732, MVN_668, Multiply_715, Reshape_688, Reshape_733, onnx::Reshape_312"/> - </rt_info> + <layer id="72" name="MVN_117945" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1082,18 +1298,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_312"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>1048576</dim> </port> </output> </layer> - <layer id="57" name="onnx::Reshape_313" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_313"/> - </rt_info> + <layer id="73" name="/encoder/down_blocks.0/resnets.1/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1103,16 +1316,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_313"> + <port id="1" precision="I64" names="/encoder/down_blocks.0/resnets.1/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="58" name="onnx::Mul_314" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_314"/> - </rt_info> + <layer id="74" name="/encoder/down_blocks.0/resnets.1/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1124,7 +1334,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_314"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -1132,10 +1342,10 @@ </port> </output> </layer> - <layer id="59" name="Constant_13451" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="1792544" size="512"/> + <layer id="75" name="Constant_155062_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="896288" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -1143,11 +1353,30 @@ </port> </output> </layer> - <layer id="60" name="onnx::Add_317" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="76" name="Constant_155062" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_317"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="77" name="/encoder/down_blocks.0/resnets.1/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1163,7 +1392,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_317"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm2/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -1171,10 +1400,10 @@ </port> </output> </layer> - <layer id="61" name="Constant_13452" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="1793056" size="512"/> + <layer id="78" name="Constant_155063_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="896544" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -1182,11 +1411,30 @@ </port> </output> </layer> - <layer id="62" name="onnx::Cast_320" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="79" name="Constant_155063" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.40, onnx::Cast_320"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="80" name="/encoder/down_blocks.0/resnets.1/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1202,7 +1450,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.40,onnx::Cast_320"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/norm2/Add_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -1210,10 +1458,7 @@ </port> </output> </layer> - <layer id="63" name="input.44" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.44, onnx::Mul_322"/> - </rt_info> + <layer id="81" name="/encoder/down_blocks.0/resnets.1/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1223,7 +1468,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.44"> + <port id="1" precision="FP32" names="/encoder/down_blocks.0/resnets.1/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -1231,13 +1476,10 @@ </port> </output> </layer> - <layer id="64" name="m.encoder.down_blocks.0.resnets.1.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="128, 128, 3, 3" offset="1793568" size="589824"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.0.resnets.1.conv2.weight"/> - </rt_info> + <layer id="82" name="vae.encoder.down_blocks.0.resnets.1.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="128, 128, 3, 3" offset="896800" size="294912" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.0.resnets.1.conv2.weight"> + <port id="0" precision="FP16"> <dim>128</dim> <dim>128</dim> <dim>3</dim> @@ -1245,11 +1487,30 @@ </port> </output> </layer> - <layer id="65" name="Convolution_773" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="83" name="vae.encoder.down_blocks.0.resnets.1.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_773"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.0.resnets.1.conv2.weight"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="84" name="/encoder/down_blocks.0/resnets.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1273,10 +1534,10 @@ </port> </output> </layer> - <layer id="66" name="Reshape_793" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="2383392" size="512"/> + <layer id="85" name="Reshape_118069_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="1191712" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -1284,11 +1545,30 @@ </port> </output> </layer> - <layer id="67" name="onnx::Add_324" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="86" name="Reshape_118069" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_792, Reshape_793, onnx::Add_324"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="87" name="/encoder/down_blocks.0/resnets.1/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1304,7 +1584,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_324"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/conv2/Conv_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -1312,11 +1592,8 @@ </port> </output> </layer> - <layer id="68" name="onnx::Div_325" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Div_325, onnx::Pad_327"/> - </rt_info> + <layer id="88" name="/encoder/down_blocks.0/resnets.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1332,7 +1609,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Div_325,onnx::Pad_327"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/resnets.1/Add_output_0,/encoder/down_blocks.0/resnets.1/Div_output_0"> <dim>1</dim> <dim>128</dim> <dim>512</dim> @@ -1340,13 +1617,10 @@ </port> </output> </layer> - <layer id="69" name="m.encoder.down_blocks.0.downsamplers.0.conv.weight" type="Const" version="opset1"> - <data element_type="f32" shape="128, 128, 3, 3" offset="2383904" size="589824"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.0.downsamplers.0.conv.weight"/> - </rt_info> + <layer id="89" name="vae.encoder.down_blocks.0.downsamplers.0.conv.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="128, 128, 3, 3" offset="1191968" size="294912" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.0.downsamplers.0.conv.weight"> + <port id="0" precision="FP16"> <dim>128</dim> <dim>128</dim> <dim>3</dim> @@ -1354,11 +1628,30 @@ </port> </output> </layer> - <layer id="70" name="Convolution_925" type="Convolution" version="opset1"> - <data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit"/> + <layer id="90" name="vae.encoder.down_blocks.0.downsamplers.0.conv.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_925, Split_857, input.48"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.0.downsamplers.0.conv.weight"> + <dim>128</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="91" name="/encoder/down_blocks.0/downsamplers.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1382,10 +1675,10 @@ </port> </output> </layer> - <layer id="71" name="Reshape_945" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="2973728" size="512"/> + <layer id="92" name="Reshape_118224_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="1486880" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -1393,11 +1686,30 @@ </port> </output> </layer> - <layer id="72" name="onnx::Cast_352" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="93" name="Reshape_118224" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_944, Reshape_945, input.52, onnx::Cast_352"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="94" name="/encoder/down_blocks.0/downsamplers.0/conv/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1413,7 +1725,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.52,onnx::Cast_352"> + <port id="2" precision="FP32" names="/encoder/down_blocks.0/downsamplers.0/conv/Conv_output_0"> <dim>1</dim> <dim>128</dim> <dim>256</dim> @@ -1421,13 +1733,10 @@ </port> </output> </layer> - <layer id="73" name="m.encoder.down_blocks.1.resnets.0.conv_shortcut.weight" type="Const" version="opset1"> - <data element_type="f32" shape="256, 128, 1, 1" offset="2974240" size="131072"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.1.resnets.0.conv_shortcut.weight"/> - </rt_info> + <layer id="95" name="vae.encoder.down_blocks.1.resnets.0.conv_shortcut.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="256, 128, 1, 1" offset="1487136" size="65536" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.1.resnets.0.conv_shortcut.weight"> + <port id="0" precision="FP16"> <dim>256</dim> <dim>128</dim> <dim>1</dim> @@ -1435,11 +1744,30 @@ </port> </output> </layer> - <layer id="74" name="Convolution_1301" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit"/> + <layer id="96" name="vae.encoder.down_blocks.1.resnets.0.conv_shortcut.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_1301"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>256</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.1.resnets.0.conv_shortcut.weight"> + <dim>256</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="97" name="/encoder/down_blocks.1/resnets.0/conv_shortcut/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1463,10 +1791,10 @@ </port> </output> </layer> - <layer id="75" name="Reshape_1321" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="3105312" size="1024"/> + <layer id="98" name="Reshape_118596_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="1552672" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -1474,11 +1802,30 @@ </port> </output> </layer> - <layer id="76" name="onnx::Add_389" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="99" name="Reshape_118596" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_1320, Reshape_1321, onnx::Add_389"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="100" name="/encoder/down_blocks.1/resnets.0/conv_shortcut/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1494,7 +1841,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_389"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/conv_shortcut/Conv_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -1502,22 +1849,16 @@ </port> </output> </layer> - <layer id="77" name="onnx::Reshape_354" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_354"/> - </rt_info> + <layer id="101" name="/encoder/down_blocks.1/resnets.0/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_354"> + <port id="0" precision="I64" names="/encoder/down_blocks.1/resnets.0/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="78" name="onnx::InstanceNormalization_355" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_355"/> - </rt_info> + <layer id="102" name="/encoder/down_blocks.1/resnets.0/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1530,29 +1871,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_355"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>262144</dim> </port> </output> </layer> - <layer id="79" name="Constant_983" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_983"/> - </rt_info> + <layer id="103" name="Constant_118261" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="80" name="MVN_984" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_1003, Concat_1048, MVN_984, Multiply_1031, Reshape_1004, Reshape_1049, onnx::Reshape_358"/> - </rt_info> + <layer id="104" name="MVN_118262" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1564,18 +1899,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_358"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>262144</dim> </port> </output> </layer> - <layer id="81" name="onnx::Reshape_359" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_359"/> - </rt_info> + <layer id="105" name="/encoder/down_blocks.1/resnets.0/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1585,16 +1917,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_359"> + <port id="1" precision="I64" names="/encoder/down_blocks.1/resnets.0/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="82" name="onnx::Mul_360" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_360"/> - </rt_info> + <layer id="106" name="/encoder/down_blocks.1/resnets.0/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1606,7 +1935,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_360"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>128</dim> <dim>256</dim> @@ -1614,10 +1943,10 @@ </port> </output> </layer> - <layer id="83" name="Constant_13453" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="3106336" size="512"/> + <layer id="107" name="Constant_155064_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="1553184" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -1625,11 +1954,30 @@ </port> </output> </layer> - <layer id="84" name="onnx::Add_363" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="108" name="Constant_155064" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_363"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="109" name="/encoder/down_blocks.1/resnets.0/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1645,7 +1993,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_363"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm1/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>256</dim> @@ -1653,10 +2001,10 @@ </port> </output> </layer> - <layer id="85" name="Constant_13454" type="Const" version="opset1"> - <data element_type="f32" shape="1, 128, 1, 1" offset="3106848" size="512"/> + <layer id="110" name="Constant_155065_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 128, 1, 1" offset="1553440" size="256" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -1664,19 +2012,13 @@ </port> </output> </layer> - <layer id="86" name="onnx::Cast_366" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="111" name="Constant_155065" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.56, onnx::Cast_366"/> + <attribute name="decompression" version="0" /> </rt_info> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>128</dim> - <dim>256</dim> - <dim>256</dim> - </port> - <port id="1" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>128</dim> <dim>1</dim> @@ -1684,7 +2026,32 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.56,onnx::Cast_366"> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="112" name="/encoder/down_blocks.1/resnets.0/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>256</dim> + <dim>256</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>128</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm1/Add_output_0"> <dim>1</dim> <dim>128</dim> <dim>256</dim> @@ -1692,10 +2059,7 @@ </port> </output> </layer> - <layer id="87" name="input.60" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.60, onnx::Mul_368"/> - </rt_info> + <layer id="113" name="/encoder/down_blocks.1/resnets.0/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1705,7 +2069,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.60"> + <port id="1" precision="FP32" names="/encoder/down_blocks.1/resnets.0/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>128</dim> <dim>256</dim> @@ -1713,13 +2077,10 @@ </port> </output> </layer> - <layer id="88" name="m.encoder.down_blocks.1.resnets.0.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="256, 128, 3, 3" offset="3107360" size="1179648"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.1.resnets.0.conv1.weight"/> - </rt_info> + <layer id="114" name="vae.encoder.down_blocks.1.resnets.0.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="256, 128, 3, 3" offset="1553696" size="589824" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.1.resnets.0.conv1.weight"> + <port id="0" precision="FP16"> <dim>256</dim> <dim>128</dim> <dim>3</dim> @@ -1727,11 +2088,30 @@ </port> </output> </layer> - <layer id="89" name="Convolution_1089" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="115" name="vae.encoder.down_blocks.1.resnets.0.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_1089"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>256</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.1.resnets.0.conv1.weight"> + <dim>256</dim> + <dim>128</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="116" name="/encoder/down_blocks.1/resnets.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1755,10 +2135,10 @@ </port> </output> </layer> - <layer id="90" name="Reshape_1109" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="4287008" size="1024"/> + <layer id="117" name="Reshape_118386_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="2143520" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -1766,11 +2146,30 @@ </port> </output> </layer> - <layer id="91" name="onnx::Cast_370" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="118" name="Reshape_118386" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_1108, Reshape_1109, input.64, onnx::Cast_370"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="119" name="/encoder/down_blocks.1/resnets.0/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1786,7 +2185,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.64,onnx::Cast_370"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/conv1/Conv_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -1794,22 +2193,16 @@ </port> </output> </layer> - <layer id="92" name="onnx::Reshape_372" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_372"/> - </rt_info> + <layer id="120" name="/encoder/down_blocks.1/resnets.0/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_372"> + <port id="0" precision="I64" names="/encoder/down_blocks.1/resnets.0/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="93" name="onnx::InstanceNormalization_373" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_373"/> - </rt_info> + <layer id="121" name="/encoder/down_blocks.1/resnets.0/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1822,29 +2215,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_373"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>524288</dim> </port> </output> </layer> - <layer id="94" name="Constant_1147" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_1147"/> - </rt_info> + <layer id="122" name="Constant_118423" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="95" name="MVN_1148" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_1167, Concat_1212, MVN_1148, Multiply_1195, Reshape_1168, Reshape_1213, onnx::Reshape_376"/> - </rt_info> + <layer id="123" name="MVN_118424" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1856,18 +2243,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_376"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>524288</dim> </port> </output> </layer> - <layer id="96" name="onnx::Reshape_377" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_377"/> - </rt_info> + <layer id="124" name="/encoder/down_blocks.1/resnets.0/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1877,16 +2261,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_377"> + <port id="1" precision="I64" names="/encoder/down_blocks.1/resnets.0/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="97" name="onnx::Mul_378" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_378"/> - </rt_info> + <layer id="125" name="/encoder/down_blocks.1/resnets.0/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1898,7 +2279,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_378"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -1906,10 +2287,10 @@ </port> </output> </layer> - <layer id="98" name="Constant_13455" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="4288032" size="1024"/> + <layer id="126" name="Constant_155066_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="2144032" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -1917,11 +2298,30 @@ </port> </output> </layer> - <layer id="99" name="onnx::Add_381" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="127" name="Constant_155066" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_381"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="128" name="/encoder/down_blocks.1/resnets.0/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1937,7 +2337,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_381"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm2/Mul_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -1945,10 +2345,10 @@ </port> </output> </layer> - <layer id="100" name="Constant_13456" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="4289056" size="1024"/> + <layer id="129" name="Constant_155067_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="2144544" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -1956,11 +2356,30 @@ </port> </output> </layer> - <layer id="101" name="onnx::Cast_384" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="130" name="Constant_155067" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.68, onnx::Cast_384"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="131" name="/encoder/down_blocks.1/resnets.0/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1976,7 +2395,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.68,onnx::Cast_384"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/norm2/Add_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -1984,10 +2403,7 @@ </port> </output> </layer> - <layer id="102" name="input.72" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.72, onnx::Mul_386"/> - </rt_info> + <layer id="132" name="/encoder/down_blocks.1/resnets.0/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -1997,7 +2413,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.72"> + <port id="1" precision="FP32" names="/encoder/down_blocks.1/resnets.0/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2005,13 +2421,10 @@ </port> </output> </layer> - <layer id="103" name="m.encoder.down_blocks.1.resnets.0.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="256, 256, 3, 3" offset="4290080" size="2359296"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.1.resnets.0.conv2.weight"/> - </rt_info> + <layer id="133" name="vae.encoder.down_blocks.1.resnets.0.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="256, 256, 3, 3" offset="2145056" size="1179648" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.1.resnets.0.conv2.weight"> + <port id="0" precision="FP16"> <dim>256</dim> <dim>256</dim> <dim>3</dim> @@ -2019,11 +2432,30 @@ </port> </output> </layer> - <layer id="104" name="Convolution_1253" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="134" name="vae.encoder.down_blocks.1.resnets.0.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_1253"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>256</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.1.resnets.0.conv2.weight"> + <dim>256</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="135" name="/encoder/down_blocks.1/resnets.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2047,10 +2479,10 @@ </port> </output> </layer> - <layer id="105" name="Reshape_1273" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="6649376" size="1024"/> + <layer id="136" name="Reshape_118548_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="3324704" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2058,11 +2490,30 @@ </port> </output> </layer> - <layer id="106" name="onnx::Add_388" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="137" name="Reshape_118548" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_1272, Reshape_1273, onnx::Add_388"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="138" name="/encoder/down_blocks.1/resnets.0/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2078,7 +2529,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_388"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/conv2/Conv_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2086,11 +2537,8 @@ </port> </output> </layer> - <layer id="107" name="onnx::Div_390" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.76, onnx::Cast_392, onnx::Div_390"/> - </rt_info> + <layer id="139" name="/encoder/down_blocks.1/resnets.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2106,7 +2554,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.76,onnx::Cast_392,onnx::Div_390"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.0/Add_output_0,/encoder/down_blocks.1/resnets.0/Div_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2114,22 +2562,16 @@ </port> </output> </layer> - <layer id="108" name="onnx::Reshape_394" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_394"/> - </rt_info> + <layer id="140" name="/encoder/down_blocks.1/resnets.1/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_394"> + <port id="0" precision="I64" names="/encoder/down_blocks.1/resnets.1/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="109" name="onnx::InstanceNormalization_395" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_395"/> - </rt_info> + <layer id="141" name="/encoder/down_blocks.1/resnets.1/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2142,29 +2584,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_395"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>524288</dim> </port> </output> </layer> - <layer id="110" name="Constant_1362" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_1362"/> - </rt_info> + <layer id="142" name="Constant_118636" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="111" name="MVN_1363" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_1382, Concat_1427, MVN_1363, Multiply_1410, Reshape_1383, Reshape_1428, onnx::Reshape_398"/> - </rt_info> + <layer id="143" name="MVN_118637" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2176,18 +2612,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_398"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>524288</dim> </port> </output> </layer> - <layer id="112" name="onnx::Reshape_399" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_399"/> - </rt_info> + <layer id="144" name="/encoder/down_blocks.1/resnets.1/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2197,16 +2630,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_399"> + <port id="1" precision="I64" names="/encoder/down_blocks.1/resnets.1/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="113" name="onnx::Mul_400" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_400"/> - </rt_info> + <layer id="145" name="/encoder/down_blocks.1/resnets.1/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2218,7 +2648,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_400"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2226,10 +2656,10 @@ </port> </output> </layer> - <layer id="114" name="Constant_13457" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="6650400" size="1024"/> + <layer id="146" name="Constant_155068_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="3325216" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2237,11 +2667,30 @@ </port> </output> </layer> - <layer id="115" name="onnx::Add_403" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="147" name="Constant_155068" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_403"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="148" name="/encoder/down_blocks.1/resnets.1/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2257,7 +2706,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_403"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm1/Mul_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2265,10 +2714,10 @@ </port> </output> </layer> - <layer id="116" name="Constant_13458" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="6651424" size="1024"/> + <layer id="149" name="Constant_155069_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="3325728" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2276,11 +2725,30 @@ </port> </output> </layer> - <layer id="117" name="onnx::Cast_406" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="150" name="Constant_155069" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.80, onnx::Cast_406"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="151" name="/encoder/down_blocks.1/resnets.1/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2296,7 +2764,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.80,onnx::Cast_406"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm1/Add_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2304,10 +2772,7 @@ </port> </output> </layer> - <layer id="118" name="input.84" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.84, onnx::Mul_408"/> - </rt_info> + <layer id="152" name="/encoder/down_blocks.1/resnets.1/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2317,7 +2782,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.84"> + <port id="1" precision="FP32" names="/encoder/down_blocks.1/resnets.1/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2325,13 +2790,10 @@ </port> </output> </layer> - <layer id="119" name="m.encoder.down_blocks.1.resnets.1.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="256, 256, 3, 3" offset="6652448" size="2359296"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.1.resnets.1.conv1.weight"/> - </rt_info> + <layer id="153" name="vae.encoder.down_blocks.1.resnets.1.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="256, 256, 3, 3" offset="3326240" size="1179648" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.1.resnets.1.conv1.weight"> + <port id="0" precision="FP16"> <dim>256</dim> <dim>256</dim> <dim>3</dim> @@ -2339,11 +2801,30 @@ </port> </output> </layer> - <layer id="120" name="Convolution_1468" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="154" name="vae.encoder.down_blocks.1.resnets.1.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_1468"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>256</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.1.resnets.1.conv1.weight"> + <dim>256</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="155" name="/encoder/down_blocks.1/resnets.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2367,10 +2848,10 @@ </port> </output> </layer> - <layer id="121" name="Reshape_1488" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="9011744" size="1024"/> + <layer id="156" name="Reshape_118761_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="4505888" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2378,11 +2859,30 @@ </port> </output> </layer> - <layer id="122" name="onnx::Cast_410" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="157" name="Reshape_118761" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_1487, Reshape_1488, input.88, onnx::Cast_410"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="158" name="/encoder/down_blocks.1/resnets.1/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2398,7 +2898,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.88,onnx::Cast_410"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/conv1/Conv_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2406,22 +2906,16 @@ </port> </output> </layer> - <layer id="123" name="onnx::Reshape_412" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_412"/> - </rt_info> + <layer id="159" name="/encoder/down_blocks.1/resnets.1/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_412"> + <port id="0" precision="I64" names="/encoder/down_blocks.1/resnets.1/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="124" name="onnx::InstanceNormalization_413" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_413"/> - </rt_info> + <layer id="160" name="/encoder/down_blocks.1/resnets.1/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2434,29 +2928,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_413"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>524288</dim> </port> </output> </layer> - <layer id="125" name="Constant_1526" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_1526"/> - </rt_info> + <layer id="161" name="Constant_118798" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="126" name="MVN_1527" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_1546, Concat_1591, MVN_1527, Multiply_1574, Reshape_1547, Reshape_1592, onnx::Reshape_416"/> - </rt_info> + <layer id="162" name="MVN_118799" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2468,18 +2956,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_416"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>524288</dim> </port> </output> </layer> - <layer id="127" name="onnx::Reshape_417" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_417"/> - </rt_info> + <layer id="163" name="/encoder/down_blocks.1/resnets.1/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2489,16 +2974,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_417"> + <port id="1" precision="I64" names="/encoder/down_blocks.1/resnets.1/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="128" name="onnx::Mul_418" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_418"/> - </rt_info> + <layer id="164" name="/encoder/down_blocks.1/resnets.1/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2510,7 +2992,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_418"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2518,10 +3000,10 @@ </port> </output> </layer> - <layer id="129" name="Constant_13459" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="9012768" size="1024"/> + <layer id="165" name="Constant_155070_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="4506400" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2529,19 +3011,13 @@ </port> </output> </layer> - <layer id="130" name="onnx::Add_421" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="166" name="Constant_155070" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_421"/> + <attribute name="decompression" version="0" /> </rt_info> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>256</dim> - <dim>256</dim> - <dim>256</dim> - </port> - <port id="1" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2549,18 +3025,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_421"> - <dim>1</dim> - <dim>256</dim> - <dim>256</dim> - <dim>256</dim> - </port> - </output> - </layer> - <layer id="131" name="Constant_13460" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="9013792" size="1024"/> - <output> - <port id="0" precision="FP32"> + <port id="1" precision="FP32"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2568,11 +3033,8 @@ </port> </output> </layer> - <layer id="132" name="onnx::Cast_424" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.92, onnx::Cast_424"/> - </rt_info> + <layer id="167" name="/encoder/down_blocks.1/resnets.1/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2588,7 +3050,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.92,onnx::Cast_424"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm2/Mul_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2596,10 +3058,41 @@ </port> </output> </layer> - <layer id="133" name="input.96" type="Swish" version="opset4"> + <layer id="168" name="Constant_155071_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="4506912" size="512" /> + <output> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="169" name="Constant_155071" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.96, onnx::Mul_426"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="170" name="/encoder/down_blocks.1/resnets.1/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2607,9 +3100,15 @@ <dim>256</dim> <dim>256</dim> </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> </input> <output> - <port id="1" precision="FP32" names="input.96"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/norm2/Add_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2617,13 +3116,28 @@ </port> </output> </layer> - <layer id="134" name="m.encoder.down_blocks.1.resnets.1.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="256, 256, 3, 3" offset="9014816" size="2359296"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.1.resnets.1.conv2.weight"/> - </rt_info> + <layer id="171" name="/encoder/down_blocks.1/resnets.1/nonlinearity_1/Mul" type="Swish" version="opset4"> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>256</dim> + <dim>256</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/encoder/down_blocks.1/resnets.1/nonlinearity_1/Mul_output_0"> + <dim>1</dim> + <dim>256</dim> + <dim>256</dim> + <dim>256</dim> + </port> + </output> + </layer> + <layer id="172" name="vae.encoder.down_blocks.1.resnets.1.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="256, 256, 3, 3" offset="4507424" size="1179648" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.1.resnets.1.conv2.weight"> + <port id="0" precision="FP16"> <dim>256</dim> <dim>256</dim> <dim>3</dim> @@ -2631,11 +3145,30 @@ </port> </output> </layer> - <layer id="135" name="Convolution_1632" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="173" name="vae.encoder.down_blocks.1.resnets.1.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_1632"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>256</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.1.resnets.1.conv2.weight"> + <dim>256</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="174" name="/encoder/down_blocks.1/resnets.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2659,10 +3192,10 @@ </port> </output> </layer> - <layer id="136" name="Reshape_1652" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="11374112" size="1024"/> + <layer id="175" name="Reshape_118923_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="5687072" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2670,11 +3203,30 @@ </port> </output> </layer> - <layer id="137" name="onnx::Add_428" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="176" name="Reshape_118923" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_1651, Reshape_1652, onnx::Add_428"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="177" name="/encoder/down_blocks.1/resnets.1/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2690,7 +3242,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_428"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/conv2/Conv_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2698,11 +3250,8 @@ </port> </output> </layer> - <layer id="138" name="onnx::Div_429" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Div_429, onnx::Pad_431"/> - </rt_info> + <layer id="178" name="/encoder/down_blocks.1/resnets.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2718,7 +3267,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Div_429,onnx::Pad_431"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/resnets.1/Add_output_0,/encoder/down_blocks.1/resnets.1/Div_output_0"> <dim>1</dim> <dim>256</dim> <dim>256</dim> @@ -2726,13 +3275,10 @@ </port> </output> </layer> - <layer id="139" name="m.encoder.down_blocks.1.downsamplers.0.conv.weight" type="Const" version="opset1"> - <data element_type="f32" shape="256, 256, 3, 3" offset="11375136" size="2359296"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.1.downsamplers.0.conv.weight"/> - </rt_info> + <layer id="179" name="vae.encoder.down_blocks.1.downsamplers.0.conv.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="256, 256, 3, 3" offset="5687584" size="1179648" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.1.downsamplers.0.conv.weight"> + <port id="0" precision="FP16"> <dim>256</dim> <dim>256</dim> <dim>3</dim> @@ -2740,11 +3286,30 @@ </port> </output> </layer> - <layer id="140" name="Convolution_1781" type="Convolution" version="opset1"> - <data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit"/> + <layer id="180" name="vae.encoder.down_blocks.1.downsamplers.0.conv.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_1781, Split_1713, input.100"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>256</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.1.downsamplers.0.conv.weight"> + <dim>256</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="181" name="/encoder/down_blocks.1/downsamplers.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2768,10 +3333,10 @@ </port> </output> </layer> - <layer id="141" name="Reshape_1801" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="13734432" size="1024"/> + <layer id="182" name="Reshape_119078_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="6867232" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -2779,11 +3344,30 @@ </port> </output> </layer> - <layer id="142" name="onnx::Cast_456" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="183" name="Reshape_119078" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_1800, Reshape_1801, input.104, onnx::Cast_456"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="184" name="/encoder/down_blocks.1/downsamplers.0/conv/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2799,7 +3383,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.104,onnx::Cast_456"> + <port id="2" precision="FP32" names="/encoder/down_blocks.1/downsamplers.0/conv/Conv_output_0"> <dim>1</dim> <dim>256</dim> <dim>128</dim> @@ -2807,13 +3391,10 @@ </port> </output> </layer> - <layer id="143" name="m.encoder.down_blocks.2.resnets.0.conv_shortcut.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 256, 1, 1" offset="13735456" size="524288"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.2.resnets.0.conv_shortcut.weight"/> - </rt_info> + <layer id="185" name="vae.encoder.down_blocks.2.resnets.0.conv_shortcut.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 256, 1, 1" offset="6867744" size="262144" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.2.resnets.0.conv_shortcut.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>256</dim> <dim>1</dim> @@ -2821,11 +3402,30 @@ </port> </output> </layer> - <layer id="144" name="Convolution_2157" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit"/> + <layer id="186" name="vae.encoder.down_blocks.2.resnets.0.conv_shortcut.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_2157"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.2.resnets.0.conv_shortcut.weight"> + <dim>512</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="187" name="/encoder/down_blocks.2/resnets.0/conv_shortcut/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2849,10 +3449,10 @@ </port> </output> </layer> - <layer id="145" name="Reshape_2177" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="14259744" size="2048"/> + <layer id="188" name="Reshape_119450_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="7129888" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -2860,11 +3460,30 @@ </port> </output> </layer> - <layer id="146" name="onnx::Add_493" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="189" name="Reshape_119450" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_2176, Reshape_2177, onnx::Add_493"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="190" name="/encoder/down_blocks.2/resnets.0/conv_shortcut/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2880,7 +3499,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_493"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/conv_shortcut/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -2888,22 +3507,16 @@ </port> </output> </layer> - <layer id="147" name="onnx::Reshape_458" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_458"/> - </rt_info> + <layer id="191" name="/encoder/down_blocks.2/resnets.0/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_458"> + <port id="0" precision="I64" names="/encoder/down_blocks.2/resnets.0/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="148" name="onnx::InstanceNormalization_459" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_459"/> - </rt_info> + <layer id="192" name="/encoder/down_blocks.2/resnets.0/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2916,29 +3529,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_459"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>131072</dim> </port> </output> </layer> - <layer id="149" name="Constant_1839" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_1839"/> - </rt_info> + <layer id="193" name="Constant_119115" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="150" name="MVN_1840" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_1859, Concat_1904, MVN_1840, Multiply_1887, Reshape_1860, Reshape_1905, onnx::Reshape_462"/> - </rt_info> + <layer id="194" name="MVN_119116" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2950,18 +3557,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_462"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>131072</dim> </port> </output> </layer> - <layer id="151" name="onnx::Reshape_463" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_463"/> - </rt_info> + <layer id="195" name="/encoder/down_blocks.2/resnets.0/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2971,16 +3575,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_463"> + <port id="1" precision="I64" names="/encoder/down_blocks.2/resnets.0/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="152" name="onnx::Mul_464" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_464"/> - </rt_info> + <layer id="196" name="/encoder/down_blocks.2/resnets.0/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -2992,7 +3593,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_464"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>256</dim> <dim>128</dim> @@ -3000,10 +3601,10 @@ </port> </output> </layer> - <layer id="153" name="Constant_13461" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="14261792" size="1024"/> + <layer id="197" name="Constant_155072_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="7130912" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -3011,11 +3612,30 @@ </port> </output> </layer> - <layer id="154" name="onnx::Add_467" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="198" name="Constant_155072" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_467"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="199" name="/encoder/down_blocks.2/resnets.0/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3031,7 +3651,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_467"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm1/Mul_output_0"> <dim>1</dim> <dim>256</dim> <dim>128</dim> @@ -3039,10 +3659,10 @@ </port> </output> </layer> - <layer id="155" name="Constant_13462" type="Const" version="opset1"> - <data element_type="f32" shape="1, 256, 1, 1" offset="14262816" size="1024"/> + <layer id="200" name="Constant_155073_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 256, 1, 1" offset="7131424" size="512" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>256</dim> <dim>1</dim> @@ -3050,11 +3670,30 @@ </port> </output> </layer> - <layer id="156" name="onnx::Cast_470" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="201" name="Constant_155073" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.108, onnx::Cast_470"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>256</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="202" name="/encoder/down_blocks.2/resnets.0/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3070,7 +3709,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.108,onnx::Cast_470"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm1/Add_output_0"> <dim>1</dim> <dim>256</dim> <dim>128</dim> @@ -3078,10 +3717,7 @@ </port> </output> </layer> - <layer id="157" name="input.112" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.112, onnx::Mul_472"/> - </rt_info> + <layer id="203" name="/encoder/down_blocks.2/resnets.0/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3091,7 +3727,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.112"> + <port id="1" precision="FP32" names="/encoder/down_blocks.2/resnets.0/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>256</dim> <dim>128</dim> @@ -3099,13 +3735,10 @@ </port> </output> </layer> - <layer id="158" name="m.encoder.down_blocks.2.resnets.0.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 256, 3, 3" offset="14263840" size="4718592"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.2.resnets.0.conv1.weight"/> - </rt_info> + <layer id="204" name="vae.encoder.down_blocks.2.resnets.0.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 256, 3, 3" offset="7131936" size="2359296" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.2.resnets.0.conv1.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>256</dim> <dim>3</dim> @@ -3113,11 +3746,30 @@ </port> </output> </layer> - <layer id="159" name="Convolution_1945" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="205" name="vae.encoder.down_blocks.2.resnets.0.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_1945"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.2.resnets.0.conv1.weight"> + <dim>512</dim> + <dim>256</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="206" name="/encoder/down_blocks.2/resnets.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3141,10 +3793,10 @@ </port> </output> </layer> - <layer id="160" name="Reshape_1965" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="18982432" size="2048"/> + <layer id="207" name="Reshape_119240_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="9491232" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3152,11 +3804,30 @@ </port> </output> </layer> - <layer id="161" name="onnx::Cast_474" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="208" name="Reshape_119240" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_1964, Reshape_1965, input.116, onnx::Cast_474"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="209" name="/encoder/down_blocks.2/resnets.0/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3172,7 +3843,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.116,onnx::Cast_474"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/conv1/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3180,22 +3851,16 @@ </port> </output> </layer> - <layer id="162" name="onnx::Reshape_476" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_476"/> - </rt_info> + <layer id="210" name="/encoder/down_blocks.2/resnets.0/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_476"> + <port id="0" precision="I64" names="/encoder/down_blocks.2/resnets.0/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="163" name="onnx::InstanceNormalization_477" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_477"/> - </rt_info> + <layer id="211" name="/encoder/down_blocks.2/resnets.0/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3208,29 +3873,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_477"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>262144</dim> </port> </output> </layer> - <layer id="164" name="Constant_2003" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_2003"/> - </rt_info> + <layer id="212" name="Constant_119277" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="165" name="MVN_2004" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_2023, Concat_2068, MVN_2004, Multiply_2051, Reshape_2024, Reshape_2069, onnx::Reshape_480"/> - </rt_info> + <layer id="213" name="MVN_119278" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3242,18 +3901,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_480"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>262144</dim> </port> </output> </layer> - <layer id="166" name="onnx::Reshape_481" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_481"/> - </rt_info> + <layer id="214" name="/encoder/down_blocks.2/resnets.0/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3263,16 +3919,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_481"> + <port id="1" precision="I64" names="/encoder/down_blocks.2/resnets.0/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="167" name="onnx::Mul_482" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_482"/> - </rt_info> + <layer id="215" name="/encoder/down_blocks.2/resnets.0/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3284,7 +3937,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_482"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3292,10 +3945,10 @@ </port> </output> </layer> - <layer id="168" name="Constant_13463" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="18984480" size="2048"/> + <layer id="216" name="Constant_155074_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="9492256" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3303,19 +3956,13 @@ </port> </output> </layer> - <layer id="169" name="onnx::Add_485" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="217" name="Constant_155074" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_485"/> + <attribute name="decompression" version="0" /> </rt_info> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>512</dim> - <dim>128</dim> - <dim>128</dim> - </port> - <port id="1" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3323,18 +3970,43 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_485"> + <port id="1" precision="FP32"> <dim>1</dim> <dim>512</dim> - <dim>128</dim> - <dim>128</dim> - </port> + <dim>1</dim> + <dim>1</dim> + </port> </output> </layer> - <layer id="170" name="Constant_13464" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="18986528" size="2048"/> - <output> + <layer id="218" name="/encoder/down_blocks.2/resnets.0/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>128</dim> + <dim>128</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm2/Mul_output_0"> + <dim>1</dim> + <dim>512</dim> + <dim>128</dim> + <dim>128</dim> + </port> + </output> + </layer> + <layer id="219" name="Constant_155075_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="9493280" size="1024" /> + <output> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3342,11 +4014,30 @@ </port> </output> </layer> - <layer id="171" name="onnx::Cast_488" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="220" name="Constant_155075" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.120, onnx::Cast_488"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="221" name="/encoder/down_blocks.2/resnets.0/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3362,7 +4053,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.120,onnx::Cast_488"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/norm2/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3370,10 +4061,7 @@ </port> </output> </layer> - <layer id="172" name="input.124" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.124, onnx::Mul_490"/> - </rt_info> + <layer id="222" name="/encoder/down_blocks.2/resnets.0/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3383,7 +4071,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.124"> + <port id="1" precision="FP32" names="/encoder/down_blocks.2/resnets.0/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3391,13 +4079,10 @@ </port> </output> </layer> - <layer id="173" name="m.encoder.down_blocks.2.resnets.0.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="18988576" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.2.resnets.0.conv2.weight"/> - </rt_info> + <layer id="223" name="vae.encoder.down_blocks.2.resnets.0.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="9494304" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.2.resnets.0.conv2.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -3405,11 +4090,30 @@ </port> </output> </layer> - <layer id="174" name="Convolution_2109" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="224" name="vae.encoder.down_blocks.2.resnets.0.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_2109"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.2.resnets.0.conv2.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="225" name="/encoder/down_blocks.2/resnets.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3433,10 +4137,10 @@ </port> </output> </layer> - <layer id="175" name="Reshape_2129" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="28425760" size="2048"/> + <layer id="226" name="Reshape_119402_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="14212896" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3444,11 +4148,30 @@ </port> </output> </layer> - <layer id="176" name="onnx::Add_492" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="227" name="Reshape_119402" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_2128, Reshape_2129, onnx::Add_492"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="228" name="/encoder/down_blocks.2/resnets.0/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3464,7 +4187,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_492"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/conv2/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3472,11 +4195,8 @@ </port> </output> </layer> - <layer id="177" name="onnx::Div_494" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.128, onnx::Cast_496, onnx::Div_494"/> - </rt_info> + <layer id="229" name="/encoder/down_blocks.2/resnets.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3492,7 +4212,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.128,onnx::Cast_496,onnx::Div_494"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.0/Add_output_0,/encoder/down_blocks.2/resnets.0/Div_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3500,22 +4220,16 @@ </port> </output> </layer> - <layer id="178" name="onnx::Reshape_498" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_498"/> - </rt_info> + <layer id="230" name="/encoder/down_blocks.2/resnets.1/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_498"> + <port id="0" precision="I64" names="/encoder/down_blocks.2/resnets.1/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="179" name="onnx::InstanceNormalization_499" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_499"/> - </rt_info> + <layer id="231" name="/encoder/down_blocks.2/resnets.1/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3528,29 +4242,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_499"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>262144</dim> </port> </output> </layer> - <layer id="180" name="Constant_2218" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_2218"/> - </rt_info> + <layer id="232" name="Constant_119490" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="181" name="MVN_2219" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_2238, Concat_2283, MVN_2219, Multiply_2266, Reshape_2239, Reshape_2284, onnx::Reshape_502"/> - </rt_info> + <layer id="233" name="MVN_119491" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3562,18 +4270,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_502"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>262144</dim> </port> </output> </layer> - <layer id="182" name="onnx::Reshape_503" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_503"/> - </rt_info> + <layer id="234" name="/encoder/down_blocks.2/resnets.1/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3583,16 +4288,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_503"> + <port id="1" precision="I64" names="/encoder/down_blocks.2/resnets.1/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="183" name="onnx::Mul_504" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_504"/> - </rt_info> + <layer id="235" name="/encoder/down_blocks.2/resnets.1/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3604,7 +4306,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_504"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3612,10 +4314,10 @@ </port> </output> </layer> - <layer id="184" name="Constant_13465" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="28427808" size="2048"/> + <layer id="236" name="Constant_155076_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="14213920" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3623,11 +4325,30 @@ </port> </output> </layer> - <layer id="185" name="onnx::Add_507" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="237" name="Constant_155076" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_507"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="238" name="/encoder/down_blocks.2/resnets.1/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3643,7 +4364,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_507"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3651,10 +4372,10 @@ </port> </output> </layer> - <layer id="186" name="Constant_13466" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="28429856" size="2048"/> + <layer id="239" name="Constant_155077_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="14214944" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3662,11 +4383,30 @@ </port> </output> </layer> - <layer id="187" name="onnx::Cast_510" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="240" name="Constant_155077" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.132, onnx::Cast_510"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="241" name="/encoder/down_blocks.2/resnets.1/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3682,7 +4422,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.132,onnx::Cast_510"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm1/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3690,10 +4430,7 @@ </port> </output> </layer> - <layer id="188" name="input.136" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.136, onnx::Mul_512"/> - </rt_info> + <layer id="242" name="/encoder/down_blocks.2/resnets.1/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3703,7 +4440,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.136"> + <port id="1" precision="FP32" names="/encoder/down_blocks.2/resnets.1/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3711,13 +4448,10 @@ </port> </output> </layer> - <layer id="189" name="m.encoder.down_blocks.2.resnets.1.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="28431904" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.2.resnets.1.conv1.weight"/> - </rt_info> + <layer id="243" name="vae.encoder.down_blocks.2.resnets.1.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="14215968" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.2.resnets.1.conv1.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -3725,11 +4459,30 @@ </port> </output> </layer> - <layer id="190" name="Convolution_2324" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="244" name="vae.encoder.down_blocks.2.resnets.1.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_2324"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.2.resnets.1.conv1.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="245" name="/encoder/down_blocks.2/resnets.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3753,10 +4506,10 @@ </port> </output> </layer> - <layer id="191" name="Reshape_2344" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="37869088" size="2048"/> + <layer id="246" name="Reshape_119615_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="18934560" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3764,11 +4517,30 @@ </port> </output> </layer> - <layer id="192" name="onnx::Cast_514" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="247" name="Reshape_119615" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_2343, Reshape_2344, input.140, onnx::Cast_514"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="248" name="/encoder/down_blocks.2/resnets.1/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3784,7 +4556,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.140,onnx::Cast_514"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/conv1/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3792,22 +4564,16 @@ </port> </output> </layer> - <layer id="193" name="onnx::Reshape_516" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_516"/> - </rt_info> + <layer id="249" name="/encoder/down_blocks.2/resnets.1/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_516"> + <port id="0" precision="I64" names="/encoder/down_blocks.2/resnets.1/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="194" name="onnx::InstanceNormalization_517" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_517"/> - </rt_info> + <layer id="250" name="/encoder/down_blocks.2/resnets.1/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3820,29 +4586,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_517"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>262144</dim> </port> </output> </layer> - <layer id="195" name="Constant_2382" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_2382"/> - </rt_info> + <layer id="251" name="Constant_119652" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="196" name="MVN_2383" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_2402, Concat_2447, MVN_2383, Multiply_2430, Reshape_2403, Reshape_2448, onnx::Reshape_520"/> - </rt_info> + <layer id="252" name="MVN_119653" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3854,18 +4614,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_520"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>262144</dim> </port> </output> </layer> - <layer id="197" name="onnx::Reshape_521" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_521"/> - </rt_info> + <layer id="253" name="/encoder/down_blocks.2/resnets.1/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3875,16 +4632,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_521"> + <port id="1" precision="I64" names="/encoder/down_blocks.2/resnets.1/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="198" name="onnx::Mul_522" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_522"/> - </rt_info> + <layer id="254" name="/encoder/down_blocks.2/resnets.1/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3896,7 +4650,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_522"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3904,10 +4658,10 @@ </port> </output> </layer> - <layer id="199" name="Constant_13467" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="37871136" size="2048"/> + <layer id="255" name="Constant_155078_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="18935584" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3915,11 +4669,30 @@ </port> </output> </layer> - <layer id="200" name="onnx::Add_525" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="256" name="Constant_155078" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_525"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="257" name="/encoder/down_blocks.2/resnets.1/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3935,7 +4708,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_525"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm2/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3943,10 +4716,10 @@ </port> </output> </layer> - <layer id="201" name="Constant_13468" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="37873184" size="2048"/> + <layer id="258" name="Constant_155079_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="18936608" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -3954,11 +4727,30 @@ </port> </output> </layer> - <layer id="202" name="onnx::Cast_528" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="259" name="Constant_155079" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.144, onnx::Cast_528"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="260" name="/encoder/down_blocks.2/resnets.1/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3974,7 +4766,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.144,onnx::Cast_528"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/norm2/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -3982,10 +4774,7 @@ </port> </output> </layer> - <layer id="203" name="input.148" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.148, onnx::Mul_530"/> - </rt_info> + <layer id="261" name="/encoder/down_blocks.2/resnets.1/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -3995,7 +4784,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.148"> + <port id="1" precision="FP32" names="/encoder/down_blocks.2/resnets.1/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -4003,13 +4792,10 @@ </port> </output> </layer> - <layer id="204" name="m.encoder.down_blocks.2.resnets.1.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="37875232" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.2.resnets.1.conv2.weight"/> - </rt_info> + <layer id="262" name="vae.encoder.down_blocks.2.resnets.1.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="18937632" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.2.resnets.1.conv2.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -4017,11 +4803,30 @@ </port> </output> </layer> - <layer id="205" name="Convolution_2488" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="263" name="vae.encoder.down_blocks.2.resnets.1.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_2488"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.2.resnets.1.conv2.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="264" name="/encoder/down_blocks.2/resnets.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4045,10 +4850,10 @@ </port> </output> </layer> - <layer id="206" name="Reshape_2508" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="47312416" size="2048"/> + <layer id="265" name="Reshape_119777_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="23656224" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4056,11 +4861,30 @@ </port> </output> </layer> - <layer id="207" name="onnx::Add_532" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="266" name="Reshape_119777" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_2507, Reshape_2508, onnx::Add_532"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="267" name="/encoder/down_blocks.2/resnets.1/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4076,7 +4900,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_532"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/conv2/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -4084,11 +4908,8 @@ </port> </output> </layer> - <layer id="208" name="onnx::Div_533" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Div_533, onnx::Pad_535"/> - </rt_info> + <layer id="268" name="/encoder/down_blocks.2/resnets.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4104,7 +4925,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Div_533,onnx::Pad_535"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/resnets.1/Add_output_0,/encoder/down_blocks.2/resnets.1/Div_output_0"> <dim>1</dim> <dim>512</dim> <dim>128</dim> @@ -4112,13 +4933,10 @@ </port> </output> </layer> - <layer id="209" name="m.encoder.down_blocks.2.downsamplers.0.conv.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="47314464" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.2.downsamplers.0.conv.weight"/> - </rt_info> + <layer id="269" name="vae.encoder.down_blocks.2.downsamplers.0.conv.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="23657248" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.2.downsamplers.0.conv.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -4126,19 +4944,13 @@ </port> </output> </layer> - <layer id="210" name="Convolution_2637" type="Convolution" version="opset1"> - <data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit"/> + <layer id="270" name="vae.encoder.down_blocks.2.downsamplers.0.conv.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_2637, Split_2569, input.152"/> + <attribute name="decompression" version="0" /> </rt_info> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>512</dim> - <dim>128</dim> - <dim>128</dim> - </port> - <port id="1" precision="FP32"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -4146,7 +4958,32 @@ </port> </input> <output> - <port id="2" precision="FP32"> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.2.downsamplers.0.conv.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="271" name="/encoder/down_blocks.2/downsamplers.0/conv/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>128</dim> + <dim>128</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4154,10 +4991,10 @@ </port> </output> </layer> - <layer id="211" name="Reshape_2657" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="56751648" size="2048"/> + <layer id="272" name="Reshape_119932_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="28375840" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4165,11 +5002,30 @@ </port> </output> </layer> - <layer id="212" name="onnx::Cast_560" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="273" name="Reshape_119932" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_2656, Reshape_2657, input.156, onnx::Cast_560"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="274" name="/encoder/down_blocks.2/downsamplers.0/conv/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4185,7 +5041,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.156,onnx::Cast_560"> + <port id="2" precision="FP32" names="/encoder/down_blocks.2/downsamplers.0/conv/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4193,22 +5049,16 @@ </port> </output> </layer> - <layer id="213" name="onnx::Reshape_562" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_562"/> - </rt_info> + <layer id="275" name="/encoder/down_blocks.3/resnets.0/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_562"> + <port id="0" precision="I64" names="/encoder/down_blocks.3/resnets.0/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="214" name="onnx::InstanceNormalization_563" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_563"/> - </rt_info> + <layer id="276" name="/encoder/down_blocks.3/resnets.0/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4221,29 +5071,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_563"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="215" name="Constant_2695" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_2695"/> - </rt_info> + <layer id="277" name="Constant_119969" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="216" name="MVN_2696" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_2715, Concat_2760, MVN_2696, Multiply_2743, Reshape_2716, Reshape_2761, onnx::Reshape_566"/> - </rt_info> + <layer id="278" name="MVN_119970" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4255,18 +5099,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_566"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="217" name="onnx::Reshape_567" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_567"/> - </rt_info> + <layer id="279" name="/encoder/down_blocks.3/resnets.0/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4276,16 +5117,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_567"> + <port id="1" precision="I64" names="/encoder/down_blocks.3/resnets.0/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="218" name="onnx::Mul_568" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_568"/> - </rt_info> + <layer id="280" name="/encoder/down_blocks.3/resnets.0/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4297,7 +5135,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_568"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4305,10 +5143,10 @@ </port> </output> </layer> - <layer id="219" name="Constant_13469" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="56753696" size="2048"/> + <layer id="281" name="Constant_155080_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="28376864" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4316,11 +5154,30 @@ </port> </output> </layer> - <layer id="220" name="onnx::Add_571" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="282" name="Constant_155080" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_571"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="283" name="/encoder/down_blocks.3/resnets.0/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4336,7 +5193,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_571"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4344,10 +5201,10 @@ </port> </output> </layer> - <layer id="221" name="Constant_13470" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="56755744" size="2048"/> + <layer id="284" name="Constant_155081_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="28377888" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4355,11 +5212,30 @@ </port> </output> </layer> - <layer id="222" name="onnx::Cast_574" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="285" name="Constant_155081" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.160, onnx::Cast_574"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="286" name="/encoder/down_blocks.3/resnets.0/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4375,7 +5251,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.160,onnx::Cast_574"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm1/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4383,10 +5259,7 @@ </port> </output> </layer> - <layer id="223" name="input.164" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.164, onnx::Mul_576"/> - </rt_info> + <layer id="287" name="/encoder/down_blocks.3/resnets.0/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4396,7 +5269,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.164"> + <port id="1" precision="FP32" names="/encoder/down_blocks.3/resnets.0/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4404,13 +5277,10 @@ </port> </output> </layer> - <layer id="224" name="m.encoder.down_blocks.3.resnets.0.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="56757792" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.3.resnets.0.conv1.weight"/> - </rt_info> + <layer id="288" name="vae.encoder.down_blocks.3.resnets.0.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="28378912" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.3.resnets.0.conv1.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -4418,11 +5288,30 @@ </port> </output> </layer> - <layer id="225" name="Convolution_2801" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="289" name="vae.encoder.down_blocks.3.resnets.0.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_2801"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.3.resnets.0.conv1.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="290" name="/encoder/down_blocks.3/resnets.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4446,10 +5335,10 @@ </port> </output> </layer> - <layer id="226" name="Reshape_2821" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="66194976" size="2048"/> + <layer id="291" name="Reshape_120094_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="33097504" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4457,11 +5346,30 @@ </port> </output> </layer> - <layer id="227" name="onnx::Cast_578" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="292" name="Reshape_120094" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_2820, Reshape_2821, input.168, onnx::Cast_578"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="293" name="/encoder/down_blocks.3/resnets.0/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4477,7 +5385,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.168,onnx::Cast_578"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/conv1/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4485,22 +5393,16 @@ </port> </output> </layer> - <layer id="228" name="onnx::Reshape_580" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_580"/> - </rt_info> + <layer id="294" name="/encoder/down_blocks.3/resnets.0/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_580"> + <port id="0" precision="I64" names="/encoder/down_blocks.3/resnets.0/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="229" name="onnx::InstanceNormalization_581" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_581"/> - </rt_info> + <layer id="295" name="/encoder/down_blocks.3/resnets.0/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4513,29 +5415,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_581"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="230" name="Constant_2859" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_2859"/> - </rt_info> + <layer id="296" name="Constant_120131" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="231" name="MVN_2860" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_2879, Concat_2924, MVN_2860, Multiply_2907, Reshape_2880, Reshape_2925, onnx::Reshape_584"/> - </rt_info> + <layer id="297" name="MVN_120132" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4547,18 +5443,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_584"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="232" name="onnx::Reshape_585" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_585"/> - </rt_info> + <layer id="298" name="/encoder/down_blocks.3/resnets.0/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4568,16 +5461,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_585"> + <port id="1" precision="I64" names="/encoder/down_blocks.3/resnets.0/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="233" name="onnx::Mul_586" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_586"/> - </rt_info> + <layer id="299" name="/encoder/down_blocks.3/resnets.0/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4589,7 +5479,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_586"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4597,10 +5487,10 @@ </port> </output> </layer> - <layer id="234" name="Constant_13471" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="66197024" size="2048"/> + <layer id="300" name="Constant_155082_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="33098528" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4608,11 +5498,30 @@ </port> </output> </layer> - <layer id="235" name="onnx::Add_589" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="301" name="Constant_155082" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_589"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="302" name="/encoder/down_blocks.3/resnets.0/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4628,7 +5537,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_589"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm2/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4636,10 +5545,10 @@ </port> </output> </layer> - <layer id="236" name="Constant_13472" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="66199072" size="2048"/> + <layer id="303" name="Constant_155083_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="33099552" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4647,11 +5556,30 @@ </port> </output> </layer> - <layer id="237" name="onnx::Cast_592" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="304" name="Constant_155083" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.172, onnx::Cast_592"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="305" name="/encoder/down_blocks.3/resnets.0/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4667,7 +5595,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.172,onnx::Cast_592"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/norm2/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4675,10 +5603,7 @@ </port> </output> </layer> - <layer id="238" name="input.176" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.176, onnx::Mul_594"/> - </rt_info> + <layer id="306" name="/encoder/down_blocks.3/resnets.0/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4688,7 +5613,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.176"> + <port id="1" precision="FP32" names="/encoder/down_blocks.3/resnets.0/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4696,13 +5621,10 @@ </port> </output> </layer> - <layer id="239" name="m.encoder.down_blocks.3.resnets.0.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="66201120" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.3.resnets.0.conv2.weight"/> - </rt_info> + <layer id="307" name="vae.encoder.down_blocks.3.resnets.0.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="33100576" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.3.resnets.0.conv2.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -4710,11 +5632,30 @@ </port> </output> </layer> - <layer id="240" name="Convolution_2965" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="308" name="vae.encoder.down_blocks.3.resnets.0.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_2965"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.3.resnets.0.conv2.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="309" name="/encoder/down_blocks.3/resnets.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4738,10 +5679,10 @@ </port> </output> </layer> - <layer id="241" name="Reshape_2985" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="75638304" size="2048"/> + <layer id="310" name="Reshape_120256_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="37819168" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4749,11 +5690,30 @@ </port> </output> </layer> - <layer id="242" name="onnx::Add_596" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="311" name="Reshape_120256" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_2984, Reshape_2985, onnx::Add_596"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="312" name="/encoder/down_blocks.3/resnets.0/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4769,7 +5729,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_596"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/conv2/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4777,11 +5737,8 @@ </port> </output> </layer> - <layer id="243" name="onnx::Div_597" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.180, onnx::Cast_599, onnx::Div_597"/> - </rt_info> + <layer id="313" name="/encoder/down_blocks.3/resnets.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4797,7 +5754,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.180,onnx::Cast_599,onnx::Div_597"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.0/Add_output_0,/encoder/down_blocks.3/resnets.0/Div_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4805,22 +5762,16 @@ </port> </output> </layer> - <layer id="244" name="onnx::Reshape_601" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_601"/> - </rt_info> + <layer id="314" name="/encoder/down_blocks.3/resnets.1/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_601"> + <port id="0" precision="I64" names="/encoder/down_blocks.3/resnets.1/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="245" name="onnx::InstanceNormalization_602" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_602"/> - </rt_info> + <layer id="315" name="/encoder/down_blocks.3/resnets.1/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4833,29 +5784,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_602"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="246" name="Constant_3026" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3026"/> - </rt_info> + <layer id="316" name="Constant_120296" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="247" name="MVN_3027" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_3046, Concat_3091, MVN_3027, Multiply_3074, Reshape_3047, Reshape_3092, onnx::Reshape_605"/> - </rt_info> + <layer id="317" name="MVN_120297" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4867,18 +5812,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_605"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="248" name="onnx::Reshape_606" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_606"/> - </rt_info> + <layer id="318" name="/encoder/down_blocks.3/resnets.1/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4888,16 +5830,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_606"> + <port id="1" precision="I64" names="/encoder/down_blocks.3/resnets.1/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="249" name="onnx::Mul_607" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_607"/> - </rt_info> + <layer id="319" name="/encoder/down_blocks.3/resnets.1/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4909,7 +5848,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_607"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4917,10 +5856,10 @@ </port> </output> </layer> - <layer id="250" name="Constant_13473" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="75640352" size="2048"/> + <layer id="320" name="Constant_155084_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="37820192" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4928,11 +5867,30 @@ </port> </output> </layer> - <layer id="251" name="onnx::Add_610" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="321" name="Constant_155084" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_610"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="322" name="/encoder/down_blocks.3/resnets.1/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4948,7 +5906,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_610"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4956,10 +5914,10 @@ </port> </output> </layer> - <layer id="252" name="Constant_13474" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="75642400" size="2048"/> + <layer id="323" name="Constant_155085_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="37821216" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -4967,11 +5925,30 @@ </port> </output> </layer> - <layer id="253" name="onnx::Cast_613" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="324" name="Constant_155085" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.184, onnx::Cast_613"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="325" name="/encoder/down_blocks.3/resnets.1/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -4987,7 +5964,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.184,onnx::Cast_613"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm1/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -4995,10 +5972,7 @@ </port> </output> </layer> - <layer id="254" name="input.188" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.188, onnx::Mul_615"/> - </rt_info> + <layer id="326" name="/encoder/down_blocks.3/resnets.1/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5008,7 +5982,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.188"> + <port id="1" precision="FP32" names="/encoder/down_blocks.3/resnets.1/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5016,13 +5990,10 @@ </port> </output> </layer> - <layer id="255" name="m.encoder.down_blocks.3.resnets.1.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="75644448" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.3.resnets.1.conv1.weight"/> - </rt_info> + <layer id="327" name="vae.encoder.down_blocks.3.resnets.1.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="37822240" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.3.resnets.1.conv1.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -5030,11 +6001,30 @@ </port> </output> </layer> - <layer id="256" name="Convolution_3132" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="328" name="vae.encoder.down_blocks.3.resnets.1.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_3132"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.3.resnets.1.conv1.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="329" name="/encoder/down_blocks.3/resnets.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5058,10 +6048,10 @@ </port> </output> </layer> - <layer id="257" name="Reshape_3152" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="85081632" size="2048"/> + <layer id="330" name="Reshape_120421_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="42540832" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5069,11 +6059,30 @@ </port> </output> </layer> - <layer id="258" name="onnx::Cast_617" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="331" name="Reshape_120421" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_3151, Reshape_3152, input.192, onnx::Cast_617"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="332" name="/encoder/down_blocks.3/resnets.1/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5089,7 +6098,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.192,onnx::Cast_617"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/conv1/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5097,22 +6106,16 @@ </port> </output> </layer> - <layer id="259" name="onnx::Reshape_619" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_619"/> - </rt_info> + <layer id="333" name="/encoder/down_blocks.3/resnets.1/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_619"> + <port id="0" precision="I64" names="/encoder/down_blocks.3/resnets.1/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="260" name="onnx::InstanceNormalization_620" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_620"/> - </rt_info> + <layer id="334" name="/encoder/down_blocks.3/resnets.1/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5125,29 +6128,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_620"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="261" name="Constant_3190" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3190"/> - </rt_info> + <layer id="335" name="Constant_120458" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="262" name="MVN_3191" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_3210, Concat_3255, MVN_3191, Multiply_3238, Reshape_3211, Reshape_3256, onnx::Reshape_623"/> - </rt_info> + <layer id="336" name="MVN_120459" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5159,18 +6156,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_623"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="263" name="onnx::Reshape_624" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_624"/> - </rt_info> + <layer id="337" name="/encoder/down_blocks.3/resnets.1/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5180,16 +6174,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_624"> + <port id="1" precision="I64" names="/encoder/down_blocks.3/resnets.1/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="264" name="onnx::Mul_625" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_625"/> - </rt_info> + <layer id="338" name="/encoder/down_blocks.3/resnets.1/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5201,7 +6192,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_625"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5209,10 +6200,10 @@ </port> </output> </layer> - <layer id="265" name="Constant_13475" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="85083680" size="2048"/> + <layer id="339" name="Constant_155086_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="42541856" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5220,11 +6211,30 @@ </port> </output> </layer> - <layer id="266" name="onnx::Add_628" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="340" name="Constant_155086" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_628"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="341" name="/encoder/down_blocks.3/resnets.1/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5240,7 +6250,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_628"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm2/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5248,10 +6258,10 @@ </port> </output> </layer> - <layer id="267" name="Constant_13476" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="85085728" size="2048"/> + <layer id="342" name="Constant_155087_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="42542880" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5259,11 +6269,30 @@ </port> </output> </layer> - <layer id="268" name="onnx::Cast_631" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="343" name="Constant_155087" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.196, onnx::Cast_631"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="344" name="/encoder/down_blocks.3/resnets.1/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5279,7 +6308,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.196,onnx::Cast_631"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/norm2/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5287,10 +6316,7 @@ </port> </output> </layer> - <layer id="269" name="input.200" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.200, onnx::Mul_633"/> - </rt_info> + <layer id="345" name="/encoder/down_blocks.3/resnets.1/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5300,7 +6326,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.200"> + <port id="1" precision="FP32" names="/encoder/down_blocks.3/resnets.1/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5308,13 +6334,10 @@ </port> </output> </layer> - <layer id="270" name="m.encoder.down_blocks.3.resnets.1.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="85087776" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.down_blocks.3.resnets.1.conv2.weight"/> - </rt_info> + <layer id="346" name="vae.encoder.down_blocks.3.resnets.1.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="42543904" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.down_blocks.3.resnets.1.conv2.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -5322,11 +6345,30 @@ </port> </output> </layer> - <layer id="271" name="Convolution_3296" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="347" name="vae.encoder.down_blocks.3.resnets.1.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_3296"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.down_blocks.3.resnets.1.conv2.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="348" name="/encoder/down_blocks.3/resnets.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5350,10 +6392,10 @@ </port> </output> </layer> - <layer id="272" name="Reshape_3316" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="94524960" size="2048"/> + <layer id="349" name="Reshape_120583_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="47262496" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5361,11 +6403,30 @@ </port> </output> </layer> - <layer id="273" name="onnx::Add_635" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="350" name="Reshape_120583" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_3315, Reshape_3316, onnx::Add_635"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="351" name="/encoder/down_blocks.3/resnets.1/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5381,7 +6442,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_635"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/conv2/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5389,11 +6450,8 @@ </port> </output> </layer> - <layer id="274" name="onnx::Div_636" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.204, onnx::Cast_638, onnx::Div_636"/> - </rt_info> + <layer id="352" name="/encoder/down_blocks.3/resnets.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5409,7 +6467,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.204,onnx::Cast_638,onnx::Div_636"> + <port id="2" precision="FP32" names="/encoder/down_blocks.3/resnets.1/Add_output_0,/encoder/down_blocks.3/resnets.1/Div_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5417,22 +6475,16 @@ </port> </output> </layer> - <layer id="275" name="onnx::Reshape_640" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_640"/> - </rt_info> + <layer id="353" name="/encoder/mid_block/resnets.0/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_640"> + <port id="0" precision="I64" names="/encoder/mid_block/resnets.0/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="276" name="onnx::InstanceNormalization_641" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_641"/> - </rt_info> + <layer id="354" name="/encoder/mid_block/resnets.0/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5445,29 +6497,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_641"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="277" name="Constant_3357" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3357"/> - </rt_info> + <layer id="355" name="Constant_120623" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="278" name="MVN_3358" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_3377, Concat_3422, MVN_3358, Multiply_3405, Reshape_3378, Reshape_3423, onnx::Reshape_644"/> - </rt_info> + <layer id="356" name="MVN_120624" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5479,18 +6525,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_644"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="279" name="onnx::Reshape_645" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_645"/> - </rt_info> + <layer id="357" name="/encoder/mid_block/resnets.0/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5500,16 +6543,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_645"> + <port id="1" precision="I64" names="/encoder/mid_block/resnets.0/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="280" name="onnx::Mul_646" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_646"/> - </rt_info> + <layer id="358" name="/encoder/mid_block/resnets.0/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5521,7 +6561,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_646"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5529,10 +6569,10 @@ </port> </output> </layer> - <layer id="281" name="Constant_13477" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="94527008" size="2048"/> + <layer id="359" name="Constant_155088_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="47263520" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5540,11 +6580,30 @@ </port> </output> </layer> - <layer id="282" name="onnx::Add_649" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="360" name="Constant_155088" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_649"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="361" name="/encoder/mid_block/resnets.0/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5560,7 +6619,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_649"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5568,10 +6627,10 @@ </port> </output> </layer> - <layer id="283" name="Constant_13478" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="94529056" size="2048"/> + <layer id="362" name="Constant_155089_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="47264544" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5579,11 +6638,30 @@ </port> </output> </layer> - <layer id="284" name="onnx::Cast_652" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="363" name="Constant_155089" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.208, onnx::Cast_652"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="364" name="/encoder/mid_block/resnets.0/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5599,7 +6677,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.208,onnx::Cast_652"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm1/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5607,10 +6685,7 @@ </port> </output> </layer> - <layer id="285" name="input.212" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.212, onnx::Mul_654"/> - </rt_info> + <layer id="365" name="/encoder/mid_block/resnets.0/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5620,7 +6695,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.212"> + <port id="1" precision="FP32" names="/encoder/mid_block/resnets.0/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5628,13 +6703,10 @@ </port> </output> </layer> - <layer id="286" name="m.encoder.mid_block.resnets.0.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="94531104" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.mid_block.resnets.0.conv1.weight"/> - </rt_info> + <layer id="366" name="vae.encoder.mid_block.resnets.0.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="47265568" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.mid_block.resnets.0.conv1.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -5642,11 +6714,30 @@ </port> </output> </layer> - <layer id="287" name="Convolution_3463" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="367" name="vae.encoder.mid_block.resnets.0.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_3463"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.mid_block.resnets.0.conv1.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="368" name="/encoder/mid_block/resnets.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5670,10 +6761,10 @@ </port> </output> </layer> - <layer id="288" name="Reshape_3483" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="103968288" size="2048"/> + <layer id="369" name="Reshape_120748_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="51984160" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5681,11 +6772,30 @@ </port> </output> </layer> - <layer id="289" name="onnx::Cast_656" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="370" name="Reshape_120748" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_3482, Reshape_3483, input.216, onnx::Cast_656"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="371" name="/encoder/mid_block/resnets.0/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5701,7 +6811,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.216,onnx::Cast_656"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/conv1/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5709,22 +6819,16 @@ </port> </output> </layer> - <layer id="290" name="onnx::Reshape_658" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_658"/> - </rt_info> + <layer id="372" name="/encoder/mid_block/resnets.0/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_658"> + <port id="0" precision="I64" names="/encoder/mid_block/resnets.0/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="291" name="onnx::InstanceNormalization_659" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_659"/> - </rt_info> + <layer id="373" name="/encoder/mid_block/resnets.0/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5737,29 +6841,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_659"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="292" name="Constant_3521" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3521"/> - </rt_info> + <layer id="374" name="Constant_120785" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="293" name="MVN_3522" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_3541, Concat_3586, MVN_3522, Multiply_3569, Reshape_3542, Reshape_3587, onnx::Reshape_662"/> - </rt_info> + <layer id="375" name="MVN_120786" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5771,18 +6869,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_662"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="294" name="onnx::Reshape_663" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_663"/> - </rt_info> + <layer id="376" name="/encoder/mid_block/resnets.0/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5792,16 +6887,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_663"> + <port id="1" precision="I64" names="/encoder/mid_block/resnets.0/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="295" name="onnx::Mul_664" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_664"/> - </rt_info> + <layer id="377" name="/encoder/mid_block/resnets.0/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5813,7 +6905,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_664"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5821,10 +6913,10 @@ </port> </output> </layer> - <layer id="296" name="Constant_13479" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="103970336" size="2048"/> + <layer id="378" name="Constant_155090_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="51985184" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5832,11 +6924,30 @@ </port> </output> </layer> - <layer id="297" name="onnx::Add_667" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="379" name="Constant_155090" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_667"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="380" name="/encoder/mid_block/resnets.0/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5852,7 +6963,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_667"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm2/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5860,10 +6971,10 @@ </port> </output> </layer> - <layer id="298" name="Constant_13480" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="103972384" size="2048"/> + <layer id="381" name="Constant_155091_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="51986208" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5871,11 +6982,30 @@ </port> </output> </layer> - <layer id="299" name="onnx::Cast_670" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="382" name="Constant_155091" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.220, onnx::Cast_670"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="383" name="/encoder/mid_block/resnets.0/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5891,7 +7021,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.220,onnx::Cast_670"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/norm2/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5899,10 +7029,7 @@ </port> </output> </layer> - <layer id="300" name="input.224" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.224, onnx::Mul_672"/> - </rt_info> + <layer id="384" name="/encoder/mid_block/resnets.0/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5912,7 +7039,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.224"> + <port id="1" precision="FP32" names="/encoder/mid_block/resnets.0/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5920,13 +7047,10 @@ </port> </output> </layer> - <layer id="301" name="m.encoder.mid_block.resnets.0.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="103974432" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.mid_block.resnets.0.conv2.weight"/> - </rt_info> + <layer id="385" name="vae.encoder.mid_block.resnets.0.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="51987232" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.mid_block.resnets.0.conv2.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -5934,19 +7058,13 @@ </port> </output> </layer> - <layer id="302" name="Convolution_3627" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="386" name="vae.encoder.mid_block.resnets.0.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_3627"/> + <attribute name="decompression" version="0" /> </rt_info> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>512</dim> - <dim>64</dim> - <dim>64</dim> - </port> - <port id="1" precision="FP32"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -5954,7 +7072,32 @@ </port> </input> <output> - <port id="2" precision="FP32"> + <port id="1" precision="FP32" names="vae.encoder.mid_block.resnets.0.conv2.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="387" name="/encoder/mid_block/resnets.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>64</dim> + <dim>64</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -5962,10 +7105,10 @@ </port> </output> </layer> - <layer id="303" name="Reshape_3647" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="113411616" size="2048"/> + <layer id="388" name="Reshape_120910_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="56705824" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -5973,11 +7116,30 @@ </port> </output> </layer> - <layer id="304" name="onnx::Add_674" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="389" name="Reshape_120910" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_3646, Reshape_3647, onnx::Add_674"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="390" name="/encoder/mid_block/resnets.0/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -5993,7 +7155,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_674"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/conv2/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -6001,11 +7163,8 @@ </port> </output> </layer> - <layer id="305" name="onnx::Div_675" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.228, onnx::Div_675"/> - </rt_info> + <layer id="391" name="/encoder/mid_block/resnets.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6021,7 +7180,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.228,onnx::Div_675"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.0/Add_output_0,/encoder/mid_block/resnets.0/Div_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -6029,22 +7188,16 @@ </port> </output> </layer> - <layer id="306" name="onnx::Reshape_690" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_690"/> - </rt_info> + <layer id="392" name="/encoder/mid_block/attentions.0/group_norm/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_690"> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/group_norm/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="307" name="onnx::InstanceNormalization_691" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_691"/> - </rt_info> + <layer id="393" name="/encoder/mid_block/attentions.0/group_norm/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6057,29 +7210,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_691"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/group_norm/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="308" name="Constant_3703" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3703"/> - </rt_info> + <layer id="394" name="Constant_120966" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="309" name="MVN_3704" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_3723, Concat_3768, MVN_3704, Multiply_3751, Reshape_3724, Reshape_3769, onnx::Reshape_694"/> - </rt_info> + <layer id="395" name="MVN_120967" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6091,18 +7238,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_694"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/group_norm/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="310" name="onnx::Reshape_695" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Gather_678, onnx::Gather_681, onnx::Gather_684, onnx::Gather_687, onnx::Reshape_695, onnx::Reshape_816"/> - </rt_info> + <layer id="396" name="/encoder/mid_block/attentions.0/group_norm/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6112,16 +7256,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Gather_678,onnx::Gather_681,onnx::Gather_684,onnx::Gather_687,onnx::Reshape_695,onnx::Reshape_816"> + <port id="1" precision="I64" names="/encoder/mid_block/attentions.0/Concat_10_output_0,/encoder/mid_block/attentions.0/Shape_1_output_0,/encoder/mid_block/attentions.0/Shape_2_output_0,/encoder/mid_block/attentions.0/Shape_3_output_0,/encoder/mid_block/attentions.0/Shape_output_0,/encoder/mid_block/attentions.0/group_norm/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="311" name="onnx::Mul_696" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_696"/> - </rt_info> + <layer id="397" name="/encoder/mid_block/attentions.0/group_norm/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6133,7 +7274,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_696"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/group_norm/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -6141,10 +7282,10 @@ </port> </output> </layer> - <layer id="312" name="Constant_13481" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="113413664" size="2048"/> + <layer id="398" name="Constant_155092_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="56706848" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -6152,11 +7293,30 @@ </port> </output> </layer> - <layer id="313" name="onnx::Add_699" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="399" name="Constant_155092" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_699"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="400" name="/encoder/mid_block/attentions.0/group_norm/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6172,7 +7332,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_699"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/group_norm/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -6180,10 +7340,10 @@ </port> </output> </layer> - <layer id="314" name="Constant_13482" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="113415712" size="2048"/> + <layer id="401" name="Constant_155093_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="56707872" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -6191,11 +7351,30 @@ </port> </output> </layer> - <layer id="315" name="onnx::Reshape_702" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="402" name="Constant_155093" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_702"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="403" name="/encoder/mid_block/attentions.0/group_norm/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6211,7 +7390,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_702"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/group_norm/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -6219,28 +7398,22 @@ </port> </output> </layer> - <layer id="316" name="Constant_11761" type="Const" version="opset1"> - <data element_type="i64" shape="2" offset="113417760" size="16"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_710"/> - </rt_info> + <layer id="404" name="Constant_150367" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="56708896" size="16" /> <output> <port id="0" precision="I64"> <dim>2</dim> </port> </output> </layer> - <layer id="317" name="Constant_11762" type="Const" version="opset1"> - <data element_type="i64" shape="" offset="113417776" size="8"/> + <layer id="405" name="Constant_150368" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> <output> - <port id="0" precision="I64"/> + <port id="0" precision="I64" /> </output> </layer> - <layer id="318" name="Gather_11763" type="Gather" version="opset8"> - <data batch_dims="0"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_710"/> - </rt_info> + <layer id="406" name="Gather_150369" type="Gather" version="opset8"> + <data batch_dims="0" /> <input> <port id="0" precision="I64"> <dim>4</dim> @@ -6248,7 +7421,7 @@ <port id="1" precision="I64"> <dim>2</dim> </port> - <port id="2" precision="I64"/> + <port id="2" precision="I64" /> </input> <output> <port id="3" precision="I64"> @@ -6256,119 +7429,89 @@ </port> </output> </layer> - <layer id="319" name="onnx::Gather_685" type="Const" version="opset1"> - <data element_type="i64" shape="" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Gather_685"/> - </rt_info> + <layer id="407" name="/encoder/mid_block/attentions.0/Constant_2" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="9240" size="8" /> <output> - <port id="0" precision="I64" names="onnx::Gather_685"/> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_2_output_0" /> </output> </layer> - <layer id="320" name="Constant_3688" type="Const" version="opset1"> - <data element_type="i64" shape="" offset="113417776" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3688"/> - </rt_info> + <layer id="408" name="Constant_120951" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> <output> - <port id="0" precision="I64"/> + <port id="0" precision="I64" /> </output> </layer> - <layer id="321" name="onnx::Mul_686" type="Gather" version="opset8"> - <data batch_dims="0"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3688, onnx::Gather_685, onnx::Mul_686"/> - </rt_info> + <layer id="409" name="/encoder/mid_block/attentions.0/Gather_2" type="Gather" version="opset8"> + <data batch_dims="0" /> <input> <port id="0" precision="I64"> <dim>4</dim> </port> - <port id="1" precision="I64"/> - <port id="2" precision="I64"/> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> </input> <output> - <port id="3" precision="I64" names="onnx::Mul_686"/> + <port id="3" precision="I64" names="/encoder/mid_block/attentions.0/Gather_2_output_0" /> </output> </layer> - <layer id="322" name="onnx::Gather_688" type="Const" version="opset1"> - <data element_type="i64" shape="" offset="113417784" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Gather_688"/> - </rt_info> + <layer id="410" name="/encoder/mid_block/attentions.0/Constant_3" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708920" size="8" /> <output> - <port id="0" precision="I64" names="onnx::Gather_688"/> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_3_output_0" /> </output> </layer> - <layer id="323" name="Constant_3692" type="Const" version="opset1"> - <data element_type="i64" shape="" offset="113417776" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3692"/> - </rt_info> + <layer id="411" name="Constant_120955" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> <output> - <port id="0" precision="I64"/> + <port id="0" precision="I64" /> </output> </layer> - <layer id="324" name="onnx::Mul_689" type="Gather" version="opset8"> - <data batch_dims="0"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3692, onnx::Gather_688, onnx::Mul_689"/> - </rt_info> + <layer id="412" name="/encoder/mid_block/attentions.0/Gather_3" type="Gather" version="opset8"> + <data batch_dims="0" /> <input> <port id="0" precision="I64"> <dim>4</dim> </port> - <port id="1" precision="I64"/> - <port id="2" precision="I64"/> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> </input> <output> - <port id="3" precision="I64" names="onnx::Mul_689"/> + <port id="3" precision="I64" names="/encoder/mid_block/attentions.0/Gather_3_output_0" /> </output> </layer> - <layer id="325" name="onnx::Unsqueeze_703" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Unsqueeze_703"/> - </rt_info> + <layer id="413" name="/encoder/mid_block/attentions.0/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> - <port id="0" precision="I64"/> - <port id="1" precision="I64"/> + <port id="0" precision="I64" /> + <port id="1" precision="I64" /> </input> <output> - <port id="2" precision="I64" names="onnx::Unsqueeze_703"/> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Mul_output_0" /> </output> </layer> - <layer id="326" name="onnx::Unsqueeze_708" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="113417776" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Unsqueeze_708"/> - </rt_info> + <layer id="414" name="Constant_326" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> <output> - <port id="0" precision="I64" names="onnx::Unsqueeze_708"> + <port id="0" precision="I64" names="onnx::Unsqueeze_672"> <dim>1</dim> </port> </output> </layer> - <layer id="327" name="onnx::Concat_709" type="Unsqueeze" version="opset1"> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Concat_709, onnx::Unsqueeze_708"/> - </rt_info> + <layer id="415" name="/encoder/mid_block/attentions.0/Unsqueeze_2" type="Unsqueeze" version="opset1"> <input> - <port id="0" precision="I64"/> + <port id="0" precision="I64" /> <port id="1" precision="I64"> <dim>1</dim> </port> </input> <output> - <port id="2" precision="I64" names="onnx::Concat_709"> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_2_output_0"> <dim>1</dim> </port> </output> </layer> - <layer id="328" name="onnx::Reshape_710" type="Concat" version="opset1"> - <data axis="0"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_710"/> - </rt_info> + <layer id="416" name="/encoder/mid_block/attentions.0/Concat" type="Concat" version="opset1"> + <data axis="0" /> <input> <port id="0" precision="I64"> <dim>2</dim> @@ -6378,16 +7521,13 @@ </port> </input> <output> - <port id="2" precision="I64" names="onnx::Reshape_710"> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Concat_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="329" name="onnx::Transpose_711" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Transpose_711"/> - </rt_info> + <layer id="417" name="/encoder/mid_block/attentions.0/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6400,68 +7540,47 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Transpose_711"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_output_0"> <dim>1</dim> <dim>512</dim> <dim>4096</dim> </port> </output> </layer> - <layer id="330" name="Constant_3889" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="113417792" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_3889"/> - </rt_info> + <layer id="418" name="Constant_154905_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512" offset="56708928" size="524288" /> <output> - <port id="0" precision="I64"> - <dim>3</dim> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> </port> </output> </layer> - <layer id="331" name="onnx::MatMul_712" type="Transpose" version="opset1"> + <layer id="419" name="Constant_154905" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::MatMul_712"/> + <attribute name="decompression" version="0" /> </rt_info> <input> - <port id="0" precision="FP32"> - <dim>1</dim> + <port id="0" precision="FP16"> <dim>512</dim> - <dim>4096</dim> - </port> - <port id="1" precision="I64"> - <dim>3</dim> - </port> - </input> - <output> - <port id="2" precision="FP32" names="onnx::MatMul_712"> - <dim>1</dim> - <dim>4096</dim> <dim>512</dim> </port> - </output> - </layer> - <layer id="332" name="Constant_13329" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512" offset="113417816" size="1048576"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_714, onnx::MatMul_930"/> - </rt_info> + </input> <output> - <port id="0" precision="FP32"> + <port id="1" precision="FP32"> <dim>512</dim> <dim>512</dim> </port> </output> </layer> - <layer id="333" name="onnx::Add_714" type="MatMul" version="opset1"> - <data transpose_a="false" transpose_b="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_714, onnx::MatMul_930"/> - </rt_info> + <layer id="420" name="/encoder/mid_block/attentions.0/query/MatMul" type="MatMul" version="opset1"> + <data transpose_a="true" transpose_b="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> - <dim>4096</dim> <dim>512</dim> + <dim>4096</dim> </port> <port id="1" precision="FP32"> <dim>512</dim> @@ -6469,18 +7588,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_714"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/query/MatMul_output_0"> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> </output> </layer> - <layer id="334" name="query_proj" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="query_proj"/> - </rt_info> + <layer id="421" name="/encoder/mid_block/attentions.0/query/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6494,211 +7610,1124 @@ </port> </input> <output> - <port id="2" precision="FP32" names="query_proj"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/query/Add_output_0"> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> </output> </layer> - <layer id="335" name="onnx::Reshape_738" type="Const" version="opset1"> - <data element_type="i64" shape="4" offset="114466392" size="32"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Concat_935, onnx::Concat_936, onnx::Reshape_738"/> - </rt_info> + <layer id="422" name="Constant_152701" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="57233216" size="16" /> <output> <port id="0" precision="I64"> - <dim>4</dim> + <dim>2</dim> </port> </output> </layer> - <layer id="336" name="onnx::Transpose_739" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Transpose_739"/> - </rt_info> + <layer id="423" name="/encoder/mid_block/attentions.0/Constant_8" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="57233232" size="8" /> + <output> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_8_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="424" name="/encoder/mid_block/attentions.0/Shape_4" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> - <port id="1" precision="I64"> - <dim>4</dim> - </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Transpose_739"> - <dim>1</dim> - <dim>4096</dim> - <dim>1</dim> - <dim>512</dim> + <port id="1" precision="I64" names="/encoder/mid_block/attentions.0/Shape_4_output_0,/encoder/mid_block/attentions.0/Shape_5_output_0,/encoder/mid_block/attentions.0/Shape_6_output_0"> + <dim>3</dim> </port> </output> </layer> - <layer id="337" name="Constant_13331" type="Const" version="opset1"> - <data element_type="i64" shape="4" offset="114466424" size="32"/> + <layer id="425" name="/encoder/mid_block/attentions.0/Constant_6" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="9240" size="8" /> <output> - <port id="0" precision="I64"> - <dim>4</dim> - </port> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_6_output_0" /> </output> </layer> - <layer id="338" name="onnx::Mul_740" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_740"/> - </rt_info> + <layer id="426" name="Constant_121170" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="427" name="/encoder/mid_block/attentions.0/Gather_6" type="Gather" version="opset8"> + <data batch_dims="0" /> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>4096</dim> - <dim>1</dim> - <dim>512</dim> - </port> - <port id="1" precision="I64"> - <dim>4</dim> + <port id="0" precision="I64"> + <dim>3</dim> </port> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_740"> - <dim>1</dim> - <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> - </port> + <port id="3" precision="I64" names="/encoder/mid_block/attentions.0/Cast_1_output_0,/encoder/mid_block/attentions.0/Cast_output_0,/encoder/mid_block/attentions.0/Div_output_0,/encoder/mid_block/attentions.0/Gather_6_output_0" /> </output> </layer> - <layer id="339" name="Constant_13484" type="Const" version="opset1"> - <data element_type="f32" shape="1, 1, 1, 1" offset="114466456" size="4"/> + <layer id="428" name="Constant_355" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> <output> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>1</dim> - <dim>1</dim> + <port id="0" precision="I64" names="onnx::Unsqueeze_705"> <dim>1</dim> </port> </output> </layer> - <layer id="340" name="onnx::MatMul_779" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::MatMul_779"/> - </rt_info> + <layer id="429" name="/encoder/mid_block/attentions.0/Unsqueeze_5" type="Unsqueeze" version="opset1"> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> - </port> - <port id="1" precision="FP32"> - <dim>1</dim> - <dim>1</dim> - <dim>1</dim> + <port id="0" precision="I64" /> + <port id="1" precision="I64"> <dim>1</dim> </port> </input> <output> - <port id="2" precision="FP32" names="onnx::MatMul_779"> - <dim>1</dim> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_5_output_0"> <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> </port> </output> </layer> - <layer id="341" name="Constant_13485" type="Const" version="opset1"> - <data element_type="f32" shape="1, 1, 512" offset="114466460" size="2048"/> - <output> - <port id="0" precision="FP32"> + <layer id="430" name="/encoder/mid_block/attentions.0/Concat_1" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> <dim>1</dim> + </port> + <port id="2" precision="I64"> <dim>1</dim> - <dim>512</dim> </port> - </output> - </layer> - <layer id="342" name="Constant_13343" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512" offset="114468508" size="1048576"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_717, onnx::MatMul_931"/> - </rt_info> + </input> <output> - <port id="0" precision="FP32"> - <dim>512</dim> - <dim>512</dim> + <port id="3" precision="I64"> + <dim>4</dim> </port> </output> </layer> - <layer id="343" name="onnx::Add_717" type="MatMul" version="opset1"> - <data transpose_a="false" transpose_b="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_717, onnx::MatMul_931"/> - </rt_info> + <layer id="431" name="/encoder/mid_block/attentions.0/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> - <port id="1" precision="FP32"> - <dim>512</dim> - <dim>512</dim> + <port id="1" precision="I64"> + <dim>4</dim> </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_717"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_1_output_0"> <dim>1</dim> <dim>4096</dim> + <dim>1</dim> <dim>512</dim> </port> </output> </layer> - <layer id="344" name="key_proj" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="key_proj"/> - </rt_info> + <layer id="432" name="Constant_154907" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="57233240" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="433" name="/encoder/mid_block/attentions.0/Transpose_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> + <dim>4096</dim> <dim>1</dim> <dim>512</dim> </port> - <port id="1" precision="FP32"> - <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> + <port id="1" precision="I64"> + <dim>4</dim> </port> </input> <output> - <port id="2" precision="FP32" names="key_proj"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Transpose_1_output_0"> + <dim>1</dim> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> </output> </layer> - <layer id="345" name="onnx::Reshape_757" type="Const" version="opset1"> - <data element_type="i64" shape="4" offset="114466392" size="32"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Concat_935, onnx::Concat_936, onnx::Reshape_757"/> - </rt_info> + <layer id="434" name="Constant_150377" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="56708896" size="16" /> <output> <port id="0" precision="I64"> - <dim>4</dim> + <dim>2</dim> </port> </output> </layer> - <layer id="346" name="onnx::Transpose_758" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Transpose_758"/> - </rt_info> - <input> + <layer id="435" name="Constant_150378" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="436" name="Gather_150379" type="Gather" version="opset8"> + <data batch_dims="0" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + <port id="1" precision="I64"> + <dim>2</dim> + </port> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="437" name="Constant_364" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" names="onnx::Unsqueeze_714"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="438" name="/encoder/mid_block/attentions.0/Unsqueeze_8" type="Unsqueeze" version="opset1"> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_8_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="439" name="/encoder/mid_block/attentions.0/Concat_2" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Concat_2_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="440" name="/encoder/mid_block/attentions.0/Reshape_2" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_2_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="441" name="Constant_155095_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 1, 512" offset="57233272" size="1024" /> + <output> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="442" name="Constant_155095" type="Convert" version="opset1"> + <data destination_type="f32" /> + <rt_info> + <attribute name="decompression" version="0" /> + </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="443" name="Constant_154919_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512" offset="57234296" size="524288" /> + <output> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="444" name="Constant_154919" type="Convert" version="opset1"> + <data destination_type="f32" /> + <rt_info> + <attribute name="decompression" version="0" /> + </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="445" name="/encoder/mid_block/attentions.0/key/MatMul" type="MatMul" version="opset1"> + <data transpose_a="true" transpose_b="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>4096</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/key/MatMul_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="446" name="/encoder/mid_block/attentions.0/key/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/key/Add_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="447" name="Constant_152795" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="57233216" size="16" /> + <output> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="448" name="/encoder/mid_block/attentions.0/Constant_13" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="57233232" size="8" /> + <output> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_13_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="449" name="/encoder/mid_block/attentions.0/Shape_7" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/encoder/mid_block/attentions.0/Shape_7_output_0,/encoder/mid_block/attentions.0/Shape_8_output_0,/encoder/mid_block/attentions.0/Shape_9_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="450" name="/encoder/mid_block/attentions.0/Constant_11" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="9240" size="8" /> + <output> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_11_output_0" /> + </output> + </layer> + <layer id="451" name="Constant_121400" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="452" name="/encoder/mid_block/attentions.0/Gather_9" type="Gather" version="opset8"> + <data batch_dims="0" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64" names="/encoder/mid_block/attentions.0/Cast_2_output_0,/encoder/mid_block/attentions.0/Cast_3_output_0,/encoder/mid_block/attentions.0/Div_1_output_0,/encoder/mid_block/attentions.0/Gather_9_output_0" /> + </output> + </layer> + <layer id="453" name="Constant_386" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" names="onnx::Unsqueeze_737"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="454" name="/encoder/mid_block/attentions.0/Unsqueeze_11" type="Unsqueeze" version="opset1"> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_11_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="455" name="/encoder/mid_block/attentions.0/Concat_3" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="3" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="456" name="/encoder/mid_block/attentions.0/Reshape_3" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_3_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="457" name="Constant_154921" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="57233240" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="458" name="/encoder/mid_block/attentions.0/Transpose_2" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>1</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Transpose_2_output_0"> + <dim>1</dim> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="459" name="Constant_150387" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="56708896" size="16" /> + <output> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="460" name="Constant_150388" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="461" name="Gather_150389" type="Gather" version="opset8"> + <data batch_dims="0" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + <port id="1" precision="I64"> + <dim>2</dim> + </port> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="462" name="Constant_395" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" names="onnx::Unsqueeze_746"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="463" name="/encoder/mid_block/attentions.0/Unsqueeze_14" type="Unsqueeze" version="opset1"> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_14_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="464" name="/encoder/mid_block/attentions.0/Concat_4" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Concat_4_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="465" name="/encoder/mid_block/attentions.0/Reshape_4" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_4_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="466" name="Constant_155096_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 1, 1" offset="57758584" size="2" /> + <output> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="467" name="Constant_155096" type="Convert" version="opset1"> + <data destination_type="f32" /> + <rt_info> + <attribute name="decompression" version="0" /> + </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="468" name="Multiply_154959" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="469" name="/encoder/mid_block/attentions.0/Mul_1" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Mul_1_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + </output> + </layer> + <layer id="470" name="Constant_121870_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="" offset="57758586" size="2" /> + <output> + <port id="0" precision="FP16" /> + </output> + </layer> + <layer id="471" name="Constant_121870" type="Convert" version="opset1"> + <data destination_type="f32" /> + <rt_info> + <attribute name="decompression" version="0" /> + </rt_info> + <input> + <port id="0" precision="FP16" /> + </input> + <output> + <port id="1" precision="FP32" /> + </output> + </layer> + <layer id="472" name="/encoder/mid_block/attentions.0/Shape_13" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/encoder/mid_block/attentions.0/Shape_13_output_0,/encoder/mid_block/attentions.0/Shape_14_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="473" name="Constant_150392" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="56708896" size="16" /> + <output> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="474" name="Constant_150393" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="475" name="Gather_150394" type="Gather" version="opset8"> + <data batch_dims="0" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + <port id="1" precision="I64"> + <dim>2</dim> + </port> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="476" name="/encoder/mid_block/attentions.0/Shape_15" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/encoder/mid_block/attentions.0/Shape_15_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="477" name="Constant_150256" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="57233232" size="8" /> + <output> + <port id="0" precision="I64"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="478" name="Constant_121860" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="479" name="/encoder/mid_block/attentions.0/Gather_15" type="Gather" version="opset8"> + <data batch_dims="0" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_23_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="480" name="/encoder/mid_block/attentions.0/Concat_7" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Concat_7_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="481" name="/encoder/mid_block/attentions.0/ConstantOfShape" type="Broadcast" version="opset3"> + <data mode="numpy" /> + <input> + <port id="0" precision="FP32" /> + <port id="1" precision="I64"> + <dim>3</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/ConstantOfShape_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + </output> + </layer> + <layer id="482" name="Constant_155097_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 1, 1" offset="57758586" size="2" /> + <output> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="483" name="Constant_155097" type="Convert" version="opset1"> + <data destination_type="f32" /> + <rt_info> + <attribute name="decompression" version="0" /> + </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="484" name="/encoder/mid_block/attentions.0/Mul_2" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Mul_2_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + </output> + </layer> + <layer id="485" name="/encoder/mid_block/attentions.0/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Add_output_0,/encoder/mid_block/attentions.0/Cast_6_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + </output> + </layer> + <layer id="486" name="/encoder/mid_block/attentions.0/Softmax" type="SoftMax" version="opset8"> + <data axis="-1" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="/encoder/mid_block/attentions.0/Cast_7_output_0,/encoder/mid_block/attentions.0/Softmax_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>4096</dim> + </port> + </output> + </layer> + <layer id="487" name="Constant_155098_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 1, 512" offset="57758588" size="1024" /> + <output> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="488" name="Constant_155098" type="Convert" version="opset1"> + <data destination_type="f32" /> + <rt_info> + <attribute name="decompression" version="0" /> + </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="489" name="Constant_154933_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512" offset="57759612" size="524288" /> + <output> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="490" name="Constant_154933" type="Convert" version="opset1"> + <data destination_type="f32" /> + <rt_info> + <attribute name="decompression" version="0" /> + </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="491" name="/encoder/mid_block/attentions.0/value/MatMul" type="MatMul" version="opset1"> + <data transpose_a="true" transpose_b="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>4096</dim> + </port> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/value/MatMul_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="492" name="/encoder/mid_block/attentions.0/value/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>1</dim> + <dim>512</dim> + </port> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/value/Add_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="493" name="Constant_152889" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="57233216" size="16" /> + <output> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="494" name="/encoder/mid_block/attentions.0/Constant_18" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="57233232" size="8" /> + <output> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_18_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="495" name="/encoder/mid_block/attentions.0/Shape_10" type="ShapeOf" version="opset3"> + <data output_type="i64" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="I64" names="/encoder/mid_block/attentions.0/Shape_10_output_0,/encoder/mid_block/attentions.0/Shape_11_output_0,/encoder/mid_block/attentions.0/Shape_12_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="496" name="/encoder/mid_block/attentions.0/Constant_16" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="9240" size="8" /> + <output> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_16_output_0" /> + </output> + </layer> + <layer id="497" name="Constant_121630" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="498" name="/encoder/mid_block/attentions.0/Gather_12" type="Gather" version="opset8"> + <data batch_dims="0" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64" names="/encoder/mid_block/attentions.0/Cast_4_output_0,/encoder/mid_block/attentions.0/Cast_5_output_0,/encoder/mid_block/attentions.0/Div_2_output_0,/encoder/mid_block/attentions.0/Gather_12_output_0" /> + </output> + </layer> + <layer id="499" name="Constant_417" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" names="onnx::Unsqueeze_769"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="500" name="/encoder/mid_block/attentions.0/Unsqueeze_17" type="Unsqueeze" version="opset1"> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_17_output_0"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="501" name="/encoder/mid_block/attentions.0/Concat_5" type="Concat" version="opset1"> + <data axis="0" /> + <input> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + <port id="2" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="3" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="502" name="/encoder/mid_block/attentions.0/Reshape_5" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> + <port id="0" precision="FP32"> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + <port id="1" precision="I64"> + <dim>4</dim> + </port> + </input> + <output> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_5_output_0"> + <dim>1</dim> + <dim>4096</dim> + <dim>1</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="503" name="Constant_154935" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="57233240" size="32" /> + <output> + <port id="0" precision="I64"> + <dim>4</dim> + </port> + </output> + </layer> + <layer id="504" name="/encoder/mid_block/attentions.0/Transpose_3" type="Reshape" version="opset1"> + <data special_zero="true" /> + <input> <port id="0" precision="FP32"> <dim>1</dim> <dim>4096</dim> + <dim>1</dim> <dim>512</dim> </port> <port id="1" precision="I64"> @@ -6706,225 +8735,246 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Transpose_758"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Transpose_3_output_0"> + <dim>1</dim> + <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="505" name="Constant_150402" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="56708896" size="16" /> + <output> + <port id="0" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="506" name="Constant_150403" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="507" name="Gather_150404" type="Gather" version="opset8"> + <data batch_dims="0" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> + </port> + <port id="1" precision="I64"> + <dim>2</dim> + </port> + <port id="2" precision="I64" /> + </input> + <output> + <port id="3" precision="I64"> + <dim>2</dim> + </port> + </output> + </layer> + <layer id="508" name="Constant_426" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" names="onnx::Unsqueeze_778"> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="509" name="/encoder/mid_block/attentions.0/Unsqueeze_20" type="Unsqueeze" version="opset1"> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_20_output_0"> <dim>1</dim> - <dim>4096</dim> - <dim>1</dim> - <dim>512</dim> </port> </output> </layer> - <layer id="347" name="Constant_4086" type="Const" version="opset1"> - <data element_type="i64" shape="4" offset="115517084" size="32"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_4086"/> - </rt_info> - <output> + <layer id="510" name="/encoder/mid_block/attentions.0/Concat_6" type="Concat" version="opset1"> + <data axis="0" /> + <input> <port id="0" precision="I64"> - <dim>4</dim> + <dim>2</dim> + </port> + <port id="1" precision="I64"> + <dim>1</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Concat_6_output_0"> + <dim>3</dim> </port> </output> </layer> - <layer id="348" name="onnx::Mul_780" type="Transpose" version="opset1"> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_780"/> - </rt_info> + <layer id="511" name="/encoder/mid_block/attentions.0/Reshape_6" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> - <dim>4096</dim> <dim>1</dim> + <dim>4096</dim> <dim>512</dim> </port> <port id="1" precision="I64"> - <dim>4</dim> + <dim>3</dim> </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_780"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_6_output_0"> <dim>1</dim> - <dim>1</dim> - <dim>512</dim> <dim>4096</dim> + <dim>512</dim> </port> </output> </layer> - <layer id="349" name="Constant_13486" type="Const" version="opset1"> - <data element_type="f32" shape="1, 1, 1, 1" offset="114466456" size="4"/> - <output> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>1</dim> - <dim>1</dim> - <dim>1</dim> - </port> - </output> - </layer> - <layer id="350" name="onnx::MatMul_782" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::MatMul_782"/> - </rt_info> + <layer id="512" name="/encoder/mid_block/attentions.0/MatMul_1" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="false" /> <input> <port id="0" precision="FP32"> <dim>1</dim> - <dim>1</dim> - <dim>512</dim> + <dim>4096</dim> <dim>4096</dim> </port> <port id="1" precision="FP32"> <dim>1</dim> - <dim>1</dim> - <dim>1</dim> - <dim>1</dim> + <dim>4096</dim> + <dim>512</dim> </port> </input> <output> - <port id="2" precision="FP32" names="onnx::MatMul_782"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/MatMul_1_output_0"> <dim>1</dim> - <dim>1</dim> - <dim>512</dim> <dim>4096</dim> + <dim>512</dim> </port> </output> </layer> - <layer id="351" name="onnx::Cast_783" type="MatMul" version="opset1"> - <data transpose_a="false" transpose_b="false"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Cast_783, onnx::Softmax_784"/> - </rt_info> + <layer id="513" name="/encoder/mid_block/attentions.0/Shape_16" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> - <dim>1</dim> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> - <port id="1" precision="FP32"> - <dim>1</dim> - <dim>1</dim> - <dim>512</dim> - <dim>4096</dim> + </input> + <output> + <port id="1" precision="I64" names="/encoder/mid_block/attentions.0/Shape_16_output_0,/encoder/mid_block/attentions.0/Shape_17_output_0,/encoder/mid_block/attentions.0/Shape_18_output_0"> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="514" name="/encoder/mid_block/attentions.0/Constant_24" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_24_output_0" /> + </output> + </layer> + <layer id="515" name="Constant_121945" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="516" name="/encoder/mid_block/attentions.0/Gather_16" type="Gather" version="opset8"> + <data batch_dims="0" /> + <input> + <port id="0" precision="I64"> + <dim>3</dim> </port> + <port id="1" precision="I64" /> + <port id="2" precision="I64" /> </input> <output> - <port id="2" precision="FP32" names="onnx::Cast_783,onnx::Softmax_784"> - <dim>1</dim> + <port id="3" precision="I64" names="/encoder/mid_block/attentions.0/Cast_8_output_0,/encoder/mid_block/attentions.0/Cast_9_output_0,/encoder/mid_block/attentions.0/Div_3_output_0,/encoder/mid_block/attentions.0/Gather_16_output_0" /> + </output> + </layer> + <layer id="517" name="Constant_471" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" names="onnx::Unsqueeze_824"> <dim>1</dim> - <dim>4096</dim> - <dim>4096</dim> </port> </output> </layer> - <layer id="352" name="onnx::Cast_785" type="SoftMax" version="opset8"> - <data axis="-1"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Cast_785, onnx::MatMul_786"/> - </rt_info> + <layer id="518" name="/encoder/mid_block/attentions.0/Unsqueeze_24" type="Unsqueeze" version="opset1"> <input> - <port id="0" precision="FP32"> - <dim>1</dim> + <port id="0" precision="I64" /> + <port id="1" precision="I64"> <dim>1</dim> - <dim>4096</dim> - <dim>4096</dim> </port> </input> <output> - <port id="1" precision="FP32" names="onnx::Cast_785,onnx::MatMul_786"> - <dim>1</dim> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_24_output_0"> <dim>1</dim> - <dim>4096</dim> - <dim>4096</dim> </port> </output> </layer> - <layer id="353" name="Constant_13487" type="Const" version="opset1"> - <data element_type="f32" shape="1, 1, 512" offset="115517116" size="2048"/> + <layer id="519" name="/encoder/mid_block/attentions.0/Constant_28" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="57233232" size="8" /> <output> - <port id="0" precision="FP32"> - <dim>1</dim> + <port id="0" precision="I64" names="/encoder/mid_block/attentions.0/Constant_28_output_0"> <dim>1</dim> - <dim>512</dim> </port> </output> </layer> - <layer id="354" name="Constant_13350" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512" offset="115519164" size="1048576"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_720, onnx::MatMul_932"/> - </rt_info> + <layer id="520" name="Constant_150407" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="58283900" size="16" /> <output> - <port id="0" precision="FP32"> - <dim>512</dim> - <dim>512</dim> + <port id="0" precision="I64"> + <dim>2</dim> </port> </output> </layer> - <layer id="355" name="onnx::Add_720" type="MatMul" version="opset1"> - <data transpose_a="false" transpose_b="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_720, onnx::MatMul_932"/> - </rt_info> + <layer id="521" name="Constant_150408" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="522" name="Gather_150409" type="Gather" version="opset8"> + <data batch_dims="0" /> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> + <port id="0" precision="I64"> + <dim>3</dim> </port> - <port id="1" precision="FP32"> - <dim>512</dim> - <dim>512</dim> + <port id="1" precision="I64"> + <dim>2</dim> </port> + <port id="2" precision="I64" /> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_720"> - <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> + <port id="3" precision="I64"> + <dim>2</dim> </port> </output> </layer> - <layer id="356" name="value_proj" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="value_proj"/> - </rt_info> + <layer id="523" name="/encoder/mid_block/attentions.0/Concat_8" type="Concat" version="opset1"> + <data axis="0" /> <input> - <port id="0" precision="FP32"> - <dim>1</dim> + <port id="0" precision="I64"> <dim>1</dim> - <dim>512</dim> </port> - <port id="1" precision="FP32"> + <port id="1" precision="I64"> <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> </port> - </input> - <output> - <port id="2" precision="FP32" names="value_proj"> - <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> + <port id="2" precision="I64"> + <dim>2</dim> </port> - </output> - </layer> - <layer id="357" name="onnx::Reshape_775" type="Const" version="opset1"> - <data element_type="i64" shape="4" offset="114466392" size="32"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Concat_935, onnx::Concat_936, onnx::Reshape_775"/> - </rt_info> + </input> <output> - <port id="0" precision="I64"> + <port id="3" precision="I64" names="/encoder/mid_block/attentions.0/Concat_8_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="358" name="onnx::Transpose_776" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Transpose_776"/> - </rt_info> + <layer id="524" name="/encoder/mid_block/attentions.0/Reshape_7" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -6936,32 +8986,29 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Transpose_776"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_7_output_0"> <dim>1</dim> - <dim>4096</dim> <dim>1</dim> + <dim>4096</dim> <dim>512</dim> </port> </output> </layer> - <layer id="359" name="Constant_13352" type="Const" version="opset1"> - <data element_type="i64" shape="4" offset="114466424" size="32"/> + <layer id="525" name="Constant_154942" type="Const" version="opset1"> + <data element_type="i64" shape="4" offset="58283916" size="32" /> <output> <port id="0" precision="I64"> <dim>4</dim> </port> </output> </layer> - <layer id="360" name="onnx::MatMul_777" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::MatMul_777"/> - </rt_info> + <layer id="526" name="/encoder/mid_block/attentions.0/Transpose_5" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> - <dim>4096</dim> <dim>1</dim> + <dim>4096</dim> <dim>512</dim> </port> <port id="1" precision="I64"> @@ -6969,91 +9016,84 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::MatMul_777"> - <dim>1</dim> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Transpose_5_output_0"> <dim>1</dim> <dim>4096</dim> + <dim>1</dim> <dim>512</dim> </port> </output> </layer> - <layer id="361" name="onnx::Transpose_787" type="MatMul" version="opset1"> - <data transpose_a="false" transpose_b="false"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Transpose_787"/> - </rt_info> - <input> - <port id="0" precision="FP32"> - <dim>1</dim> + <layer id="527" name="Constant_481" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" names="onnx::Unsqueeze_835"> <dim>1</dim> - <dim>4096</dim> - <dim>4096</dim> </port> - <port id="1" precision="FP32"> - <dim>1</dim> + </output> + </layer> + <layer id="528" name="/encoder/mid_block/attentions.0/Unsqueeze_27" type="Unsqueeze" version="opset1"> + <input> + <port id="0" precision="I64" /> + <port id="1" precision="I64"> <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Transpose_787"> - <dim>1</dim> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Unsqueeze_27_output_0"> <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> </port> </output> </layer> - <layer id="362" name="Constant_13359" type="Const" version="opset1"> - <data element_type="i64" shape="4" offset="116567740" size="32"/> + <layer id="529" name="Constant_150412" type="Const" version="opset1"> + <data element_type="i64" shape="2" offset="58283900" size="16" /> <output> <port id="0" precision="I64"> - <dim>4</dim> + <dim>2</dim> </port> </output> </layer> - <layer id="363" name="onnx::Shape_788" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Shape_788"/> - </rt_info> + <layer id="530" name="Constant_150413" type="Const" version="opset1"> + <data element_type="i64" shape="" offset="56708912" size="8" /> + <output> + <port id="0" precision="I64" /> + </output> + </layer> + <layer id="531" name="Gather_150414" type="Gather" version="opset8"> + <data batch_dims="0" /> <input> - <port id="0" precision="FP32"> - <dim>1</dim> - <dim>1</dim> - <dim>4096</dim> - <dim>512</dim> + <port id="0" precision="I64"> + <dim>3</dim> </port> <port id="1" precision="I64"> - <dim>4</dim> + <dim>2</dim> </port> + <port id="2" precision="I64" /> </input> <output> - <port id="2" precision="FP32" names="onnx::Shape_788"> - <dim>1</dim> - <dim>4096</dim> - <dim>1</dim> - <dim>512</dim> + <port id="3" precision="I64"> + <dim>2</dim> </port> </output> </layer> - <layer id="364" name="onnx::Reshape_802" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="116567772" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Concat_939, onnx::Reshape_802"/> - </rt_info> - <output> + <layer id="532" name="/encoder/mid_block/attentions.0/Concat_9" type="Concat" version="opset1"> + <data axis="0" /> + <input> <port id="0" precision="I64"> + <dim>1</dim> + </port> + <port id="1" precision="I64"> + <dim>2</dim> + </port> + </input> + <output> + <port id="2" precision="I64" names="/encoder/mid_block/attentions.0/Concat_9_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="365" name="onnx::MatMul_803" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::MatMul_803"/> - </rt_info> + <layer id="533" name="/encoder/mid_block/attentions.0/Reshape_8" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7066,30 +9106,42 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::MatMul_803"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_8_output_0"> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> </output> </layer> - <layer id="366" name="Constant_13371" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512" offset="116567796" size="1048576"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_805, onnx::MatMul_940"/> - </rt_info> + <layer id="534" name="Constant_154954_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512" offset="58283948" size="524288" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> </port> </output> </layer> - <layer id="367" name="onnx::Add_805" type="MatMul" version="opset1"> - <data transpose_a="false" transpose_b="true"/> + <layer id="535" name="Constant_154954" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_805, onnx::MatMul_940"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>512</dim> + <dim>512</dim> + </port> + </output> + </layer> + <layer id="536" name="/encoder/mid_block/attentions.0/proj_attn/MatMul" type="MatMul" version="opset1"> + <data transpose_a="false" transpose_b="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7102,18 +9154,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_805"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/proj_attn/MatMul_output_0"> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> </output> </layer> - <layer id="368" name="onnx::Transpose_806" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Transpose_806"/> - </rt_info> + <layer id="537" name="/encoder/mid_block/attentions.0/proj_attn/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7127,28 +9176,22 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Transpose_806"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/proj_attn/Add_output_0"> <dim>1</dim> <dim>4096</dim> <dim>512</dim> </port> </output> </layer> - <layer id="369" name="Constant_4157" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="113417792" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_4157"/> - </rt_info> + <layer id="538" name="Constant_122175" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="58808236" size="24" /> <output> <port id="0" precision="I64"> <dim>3</dim> </port> </output> </layer> - <layer id="370" name="onnx::Reshape_807" type="Transpose" version="opset1"> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_807"/> - </rt_info> + <layer id="539" name="/encoder/mid_block/attentions.0/Transpose_6" type="Transpose" version="opset1"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7160,18 +9203,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_807"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Transpose_6_output_0"> <dim>1</dim> <dim>512</dim> <dim>4096</dim> </port> </output> </layer> - <layer id="371" name="onnx::Add_817" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_817"/> - </rt_info> + <layer id="540" name="/encoder/mid_block/attentions.0/Reshape_9" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7183,7 +9223,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_817"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Reshape_9_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7191,11 +9231,8 @@ </port> </output> </layer> - <layer id="372" name="onnx::Div_818" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.232, onnx::Cast_820, onnx::Div_818"/> - </rt_info> + <layer id="541" name="/encoder/mid_block/attentions.0/Add_1" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7211,7 +9248,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.232,onnx::Cast_820,onnx::Div_818"> + <port id="2" precision="FP32" names="/encoder/mid_block/attentions.0/Add_1_output_0,/encoder/mid_block/attentions.0/Div_4_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7219,22 +9256,16 @@ </port> </output> </layer> - <layer id="373" name="onnx::Reshape_822" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_822"/> - </rt_info> + <layer id="542" name="/encoder/mid_block/resnets.1/norm1/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_822"> + <port id="0" precision="I64" names="/encoder/mid_block/resnets.1/norm1/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="374" name="onnx::InstanceNormalization_823" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_823"/> - </rt_info> + <layer id="543" name="/encoder/mid_block/resnets.1/norm1/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7247,29 +9278,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_823"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm1/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="375" name="Constant_4259" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_4259"/> - </rt_info> + <layer id="544" name="Constant_122276" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="376" name="MVN_4260" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_4279, Concat_4324, MVN_4260, Multiply_4307, Reshape_4280, Reshape_4325, onnx::Reshape_826"/> - </rt_info> + <layer id="545" name="MVN_122277" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7281,18 +9306,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_826"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm1/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="377" name="onnx::Reshape_827" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_827"/> - </rt_info> + <layer id="546" name="/encoder/mid_block/resnets.1/norm1/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7302,16 +9324,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_827"> + <port id="1" precision="I64" names="/encoder/mid_block/resnets.1/norm1/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="378" name="onnx::Mul_828" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_828"/> - </rt_info> + <layer id="547" name="/encoder/mid_block/resnets.1/norm1/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7323,7 +9342,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_828"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm1/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7331,10 +9350,10 @@ </port> </output> </layer> - <layer id="379" name="Constant_13489" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="117616372" size="2048"/> + <layer id="548" name="Constant_155100_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="58808260" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -7342,11 +9361,30 @@ </port> </output> </layer> - <layer id="380" name="onnx::Add_831" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="549" name="Constant_155100" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_831"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="550" name="/encoder/mid_block/resnets.1/norm1/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7362,7 +9400,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_831"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7370,10 +9408,10 @@ </port> </output> </layer> - <layer id="381" name="Constant_13490" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="117618420" size="2048"/> + <layer id="551" name="Constant_155101_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="58809284" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -7381,11 +9419,30 @@ </port> </output> </layer> - <layer id="382" name="onnx::Cast_834" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="552" name="Constant_155101" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.236, onnx::Cast_834"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="553" name="/encoder/mid_block/resnets.1/norm1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7401,7 +9458,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.236,onnx::Cast_834"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm1/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7409,10 +9466,7 @@ </port> </output> </layer> - <layer id="383" name="input.240" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.240, onnx::Mul_836"/> - </rt_info> + <layer id="554" name="/encoder/mid_block/resnets.1/nonlinearity/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7422,7 +9476,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.240"> + <port id="1" precision="FP32" names="/encoder/mid_block/resnets.1/nonlinearity/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7430,13 +9484,10 @@ </port> </output> </layer> - <layer id="384" name="m.encoder.mid_block.resnets.1.conv1.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="117620468" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.mid_block.resnets.1.conv1.weight"/> - </rt_info> + <layer id="555" name="vae.encoder.mid_block.resnets.1.conv1.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="58810308" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.mid_block.resnets.1.conv1.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -7444,11 +9495,30 @@ </port> </output> </layer> - <layer id="385" name="Convolution_4365" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="556" name="vae.encoder.mid_block.resnets.1.conv1.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_4365"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.mid_block.resnets.1.conv1.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="557" name="/encoder/mid_block/resnets.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7472,10 +9542,10 @@ </port> </output> </layer> - <layer id="386" name="Reshape_4385" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="127057652" size="2048"/> + <layer id="558" name="Reshape_122401_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="63528900" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -7483,11 +9553,30 @@ </port> </output> </layer> - <layer id="387" name="onnx::Cast_838" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="559" name="Reshape_122401" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_4384, Reshape_4385, input.244, onnx::Cast_838"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="560" name="/encoder/mid_block/resnets.1/conv1/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7503,7 +9592,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.244,onnx::Cast_838"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/conv1/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7511,22 +9600,16 @@ </port> </output> </layer> - <layer id="388" name="onnx::Reshape_840" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_840"/> - </rt_info> + <layer id="561" name="/encoder/mid_block/resnets.1/norm2/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_840"> + <port id="0" precision="I64" names="/encoder/mid_block/resnets.1/norm2/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="389" name="onnx::InstanceNormalization_841" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_841"/> - </rt_info> + <layer id="562" name="/encoder/mid_block/resnets.1/norm2/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7539,29 +9622,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_841"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm2/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="390" name="Constant_4423" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_4423"/> - </rt_info> + <layer id="563" name="Constant_122438" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="391" name="MVN_4424" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_4443, Concat_4488, MVN_4424, Multiply_4471, Reshape_4444, Reshape_4489, onnx::Reshape_844"/> - </rt_info> + <layer id="564" name="MVN_122439" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7573,18 +9650,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_844"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm2/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="392" name="onnx::Reshape_845" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_845"/> - </rt_info> + <layer id="565" name="/encoder/mid_block/resnets.1/norm2/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7594,16 +9668,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_845"> + <port id="1" precision="I64" names="/encoder/mid_block/resnets.1/norm2/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="393" name="onnx::Mul_846" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_846"/> - </rt_info> + <layer id="566" name="/encoder/mid_block/resnets.1/norm2/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7615,7 +9686,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_846"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm2/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7623,10 +9694,10 @@ </port> </output> </layer> - <layer id="394" name="Constant_13491" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="127059700" size="2048"/> + <layer id="567" name="Constant_155102_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="63529924" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -7634,11 +9705,30 @@ </port> </output> </layer> - <layer id="395" name="onnx::Add_849" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="568" name="Constant_155102" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_849"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="569" name="/encoder/mid_block/resnets.1/norm2/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7654,7 +9744,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_849"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm2/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7662,10 +9752,10 @@ </port> </output> </layer> - <layer id="396" name="Constant_13492" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="127061748" size="2048"/> + <layer id="570" name="Constant_155103_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="63530948" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -7673,11 +9763,30 @@ </port> </output> </layer> - <layer id="397" name="onnx::Cast_852" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="571" name="Constant_155103" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.248, onnx::Cast_852"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="572" name="/encoder/mid_block/resnets.1/norm2/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7693,7 +9802,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.248,onnx::Cast_852"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/norm2/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7701,10 +9810,7 @@ </port> </output> </layer> - <layer id="398" name="input.252" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.252, onnx::Mul_854"/> - </rt_info> + <layer id="573" name="/encoder/mid_block/resnets.1/nonlinearity_1/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7714,7 +9820,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.252"> + <port id="1" precision="FP32" names="/encoder/mid_block/resnets.1/nonlinearity_1/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7722,13 +9828,10 @@ </port> </output> </layer> - <layer id="399" name="m.encoder.mid_block.resnets.1.conv2.weight" type="Const" version="opset1"> - <data element_type="f32" shape="512, 512, 3, 3" offset="127063796" size="9437184"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.mid_block.resnets.1.conv2.weight"/> - </rt_info> + <layer id="574" name="vae.encoder.mid_block.resnets.1.conv2.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="512, 512, 3, 3" offset="63531972" size="4718592" /> <output> - <port id="0" precision="FP32" names="m.encoder.mid_block.resnets.1.conv2.weight"> + <port id="0" precision="FP16"> <dim>512</dim> <dim>512</dim> <dim>3</dim> @@ -7736,11 +9839,30 @@ </port> </output> </layer> - <layer id="400" name="Convolution_4529" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="575" name="vae.encoder.mid_block.resnets.1.conv2.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_4529"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.mid_block.resnets.1.conv2.weight"> + <dim>512</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="576" name="/encoder/mid_block/resnets.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7764,10 +9886,10 @@ </port> </output> </layer> - <layer id="401" name="Reshape_4549" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="136500980" size="2048"/> + <layer id="577" name="Reshape_122563_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="68250564" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -7775,11 +9897,30 @@ </port> </output> </layer> - <layer id="402" name="onnx::Add_856" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="578" name="Reshape_122563" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_4548, Reshape_4549, onnx::Add_856"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="579" name="/encoder/mid_block/resnets.1/conv2/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7795,7 +9936,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_856"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/conv2/Conv_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7803,11 +9944,8 @@ </port> </output> </layer> - <layer id="403" name="onnx::Div_857" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> - <rt_info> - <attribute name="fused_names" version="0" value="input.256, onnx::Div_857"/> - </rt_info> + <layer id="580" name="/encoder/mid_block/resnets.1/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7823,7 +9961,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.256,onnx::Div_857"> + <port id="2" precision="FP32" names="/encoder/mid_block/resnets.1/Add_output_0,/encoder/mid_block/resnets.1/Div_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7831,22 +9969,16 @@ </port> </output> </layer> - <layer id="404" name="onnx::Reshape_860" type="Const" version="opset1"> - <data element_type="i64" shape="3" offset="18432" size="24"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_860"/> - </rt_info> + <layer id="581" name="/encoder/conv_norm_out/Constant" type="Const" version="opset1"> + <data element_type="i64" shape="3" offset="9216" size="24" /> <output> - <port id="0" precision="I64" names="onnx::Reshape_860"> + <port id="0" precision="I64" names="/encoder/conv_norm_out/Constant_output_0"> <dim>3</dim> </port> </output> </layer> - <layer id="405" name="onnx::InstanceNormalization_861" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::InstanceNormalization_861"/> - </rt_info> + <layer id="582" name="/encoder/conv_norm_out/Reshape" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7859,29 +9991,23 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::InstanceNormalization_861"> + <port id="2" precision="FP32" names="/encoder/conv_norm_out/Reshape_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="406" name="Constant_4589" type="Const" version="opset1"> - <data element_type="i64" shape="1" offset="18456" size="8"/> - <rt_info> - <attribute name="fused_names" version="0" value="Constant_4589"/> - </rt_info> + <layer id="583" name="Constant_122603" type="Const" version="opset1"> + <data element_type="i64" shape="1" offset="9240" size="8" /> <output> <port id="0" precision="I64"> <dim>1</dim> </port> </output> </layer> - <layer id="407" name="MVN_4590" type="MVN" version="opset6"> - <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT"/> - <rt_info> - <attribute name="fused_names" version="0" value="Concat_4609, Concat_4654, MVN_4590, Multiply_4637, Reshape_4610, Reshape_4655, onnx::Reshape_864"/> - </rt_info> + <layer id="584" name="MVN_122604" type="MVN" version="opset6"> + <data eps="9.9999999747524271e-07" normalize_variance="true" eps_mode="INSIDE_SQRT" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7893,18 +10019,15 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Reshape_864"> + <port id="2" precision="FP32" names="/encoder/conv_norm_out/InstanceNormalization_output_0"> <dim>1</dim> <dim>32</dim> <dim>65536</dim> </port> </output> </layer> - <layer id="408" name="onnx::Reshape_865" type="ShapeOf" version="opset3"> - <data output_type="i64"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Reshape_865"/> - </rt_info> + <layer id="585" name="/encoder/conv_norm_out/Shape" type="ShapeOf" version="opset3"> + <data output_type="i64" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7914,16 +10037,13 @@ </port> </input> <output> - <port id="1" precision="I64" names="onnx::Reshape_865"> + <port id="1" precision="I64" names="/encoder/conv_norm_out/Shape_output_0"> <dim>4</dim> </port> </output> </layer> - <layer id="409" name="onnx::Mul_866" type="Reshape" version="opset1"> - <data special_zero="true"/> - <rt_info> - <attribute name="fused_names" version="0" value="onnx::Mul_866"/> - </rt_info> + <layer id="586" name="/encoder/conv_norm_out/Reshape_1" type="Reshape" version="opset1"> + <data special_zero="true" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7935,7 +10055,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Mul_866"> + <port id="2" precision="FP32" names="/encoder/conv_norm_out/Reshape_1_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7943,10 +10063,10 @@ </port> </output> </layer> - <layer id="410" name="Constant_13493" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="136503028" size="2048"/> + <layer id="587" name="Constant_155104_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="68251588" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -7954,11 +10074,30 @@ </port> </output> </layer> - <layer id="411" name="onnx::Add_869" type="Multiply" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="588" name="Constant_155104" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="onnx::Add_869"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="589" name="/encoder/conv_norm_out/Mul" type="Multiply" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -7974,7 +10113,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="onnx::Add_869"> + <port id="2" precision="FP32" names="/encoder/conv_norm_out/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -7982,10 +10121,10 @@ </port> </output> </layer> - <layer id="412" name="Constant_13494" type="Const" version="opset1"> - <data element_type="f32" shape="1, 512, 1, 1" offset="136505076" size="2048"/> + <layer id="590" name="Constant_155105_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 512, 1, 1" offset="68252612" size="1024" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>512</dim> <dim>1</dim> @@ -7993,11 +10132,30 @@ </port> </output> </layer> - <layer id="413" name="input.260" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="591" name="Constant_155105" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="input.260"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>512</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="592" name="/encoder/conv_norm_out/Add" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -8013,7 +10171,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.260"> + <port id="2" precision="FP32" names="/encoder/conv_norm_out/Add_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -8021,10 +10179,7 @@ </port> </output> </layer> - <layer id="414" name="input.264" type="Swish" version="opset4"> - <rt_info> - <attribute name="fused_names" version="0" value="input.264, onnx::Mul_873"/> - </rt_info> + <layer id="593" name="/encoder/conv_act/Mul" type="Swish" version="opset4"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -8034,7 +10189,7 @@ </port> </input> <output> - <port id="1" precision="FP32" names="input.264"> + <port id="1" precision="FP32" names="/encoder/conv_act/Mul_output_0"> <dim>1</dim> <dim>512</dim> <dim>64</dim> @@ -8042,13 +10197,10 @@ </port> </output> </layer> - <layer id="415" name="m.encoder.conv_out.weight" type="Const" version="opset1"> - <data element_type="f32" shape="8, 512, 3, 3" offset="136507124" size="147456"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.encoder.conv_out.weight"/> - </rt_info> + <layer id="594" name="vae.encoder.conv_out.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="8, 512, 3, 3" offset="68253636" size="73728" /> <output> - <port id="0" precision="FP32" names="m.encoder.conv_out.weight"> + <port id="0" precision="FP16"> <dim>8</dim> <dim>512</dim> <dim>3</dim> @@ -8056,11 +10208,30 @@ </port> </output> </layer> - <layer id="416" name="Convolution_4694" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit"/> + <layer id="595" name="vae.encoder.conv_out.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_4694"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>8</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.encoder.conv_out.weight"> + <dim>8</dim> + <dim>512</dim> + <dim>3</dim> + <dim>3</dim> + </port> + </output> + </layer> + <layer id="596" name="/encoder/conv_out/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -8084,10 +10255,10 @@ </port> </output> </layer> - <layer id="417" name="Reshape_4714" type="Const" version="opset1"> - <data element_type="f32" shape="1, 8, 1, 1" offset="136654580" size="32"/> + <layer id="597" name="Reshape_122728_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 8, 1, 1" offset="68327364" size="16" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>8</dim> <dim>1</dim> @@ -8095,11 +10266,30 @@ </port> </output> </layer> - <layer id="418" name="input.268" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="598" name="Reshape_122728" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_4713, Reshape_4714, input.268"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>8</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="599" name="/encoder/conv_out/Conv" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -8115,7 +10305,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="input.268"> + <port id="2" precision="FP32" names="/encoder/conv_out/Conv_output_0"> <dim>1</dim> <dim>8</dim> <dim>64</dim> @@ -8123,13 +10313,10 @@ </port> </output> </layer> - <layer id="419" name="m.quant_conv.weight" type="Const" version="opset1"> - <data element_type="f32" shape="8, 8, 1, 1" offset="136654612" size="256"/> - <rt_info> - <attribute name="fused_names" version="0" value="m.quant_conv.weight"/> - </rt_info> + <layer id="600" name="vae.quant_conv.weight_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="8, 8, 1, 1" offset="68327380" size="128" /> <output> - <port id="0" precision="FP32" names="m.quant_conv.weight"> + <port id="0" precision="FP16"> <dim>8</dim> <dim>8</dim> <dim>1</dim> @@ -8137,11 +10324,30 @@ </port> </output> </layer> - <layer id="420" name="Convolution_4742" type="Convolution" version="opset1"> - <data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit"/> + <layer id="601" name="vae.quant_conv.weight" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Convolution_4742"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>8</dim> + <dim>8</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32" names="vae.quant_conv.weight"> + <dim>8</dim> + <dim>8</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="602" name="/quant_conv/Conv/WithoutBiases" type="Convolution" version="opset1"> + <data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -8165,10 +10371,10 @@ </port> </output> </layer> - <layer id="421" name="Reshape_4762" type="Const" version="opset1"> - <data element_type="f32" shape="1, 8, 1, 1" offset="136654868" size="32"/> + <layer id="603" name="Reshape_122776_compressed" type="Const" version="opset1"> + <data element_type="f16" shape="1, 8, 1, 1" offset="68327508" size="16" /> <output> - <port id="0" precision="FP32"> + <port id="0" precision="FP16"> <dim>1</dim> <dim>8</dim> <dim>1</dim> @@ -8176,11 +10382,30 @@ </port> </output> </layer> - <layer id="422" name="moments" type="Add" version="opset1"> - <data auto_broadcast="numpy"/> + <layer id="604" name="Reshape_122776" type="Convert" version="opset1"> + <data destination_type="f32" /> <rt_info> - <attribute name="fused_names" version="0" value="Concat_4761, Reshape_4762, moments"/> + <attribute name="decompression" version="0" /> </rt_info> + <input> + <port id="0" precision="FP16"> + <dim>1</dim> + <dim>8</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </input> + <output> + <port id="1" precision="FP32"> + <dim>1</dim> + <dim>8</dim> + <dim>1</dim> + <dim>1</dim> + </port> + </output> + </layer> + <layer id="605" name="image_latent" type="Add" version="opset1"> + <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -8196,7 +10421,7 @@ </port> </input> <output> - <port id="2" precision="FP32" names="moments"> + <port id="2" precision="FP32" names="image_latent"> <dim>1</dim> <dim>8</dim> <dim>64</dim> @@ -8204,10 +10429,7 @@ </port> </output> </layer> - <layer id="423" name="moments/sink_port_0" type="Result" version="opset1"> - <rt_info> - <attribute name="fused_names" version="0" value="moments/sink_port_0"/> - </rt_info> + <layer id="606" name="image_latent/sink_port_0" type="Result" version="opset1"> <input> <port id="0" precision="FP32"> <dim>1</dim> @@ -8219,514 +10441,674 @@ </layer> </layers> <edges> - <edge from-layer="0" from-port="0" to-layer="4" to-port="0"/> - <edge from-layer="1" from-port="0" to-layer="368" to-port="0"/> - <edge from-layer="2" from-port="0" to-layer="334" to-port="0"/> - <edge from-layer="3" from-port="0" to-layer="4" to-port="1"/> - <edge from-layer="4" from-port="2" to-layer="6" to-port="0"/> - <edge from-layer="5" from-port="0" to-layer="6" to-port="1"/> - <edge from-layer="6" from-port="2" to-layer="37" to-port="0"/> - <edge from-layer="6" from-port="2" to-layer="11" to-port="0"/> - <edge from-layer="6" from-port="2" to-layer="8" to-port="0"/> - <edge from-layer="7" from-port="0" to-layer="8" to-port="1"/> - <edge from-layer="8" from-port="2" to-layer="10" to-port="0"/> - <edge from-layer="9" from-port="0" to-layer="10" to-port="1"/> - <edge from-layer="10" from-port="2" to-layer="12" to-port="0"/> - <edge from-layer="11" from-port="1" to-layer="12" to-port="1"/> - <edge from-layer="12" from-port="2" to-layer="14" to-port="0"/> - <edge from-layer="13" from-port="0" to-layer="14" to-port="1"/> - <edge from-layer="14" from-port="2" to-layer="16" to-port="0"/> - <edge from-layer="15" from-port="0" to-layer="16" to-port="1"/> - <edge from-layer="16" from-port="2" to-layer="17" to-port="0"/> - <edge from-layer="17" from-port="1" to-layer="19" to-port="0"/> - <edge from-layer="18" from-port="0" to-layer="19" to-port="1"/> - <edge from-layer="19" from-port="2" to-layer="21" to-port="0"/> - <edge from-layer="20" from-port="0" to-layer="21" to-port="1"/> - <edge from-layer="21" from-port="2" to-layer="23" to-port="0"/> - <edge from-layer="21" from-port="2" to-layer="26" to-port="0"/> - <edge from-layer="22" from-port="0" to-layer="23" to-port="1"/> - <edge from-layer="23" from-port="2" to-layer="25" to-port="0"/> - <edge from-layer="24" from-port="0" to-layer="25" to-port="1"/> - <edge from-layer="25" from-port="2" to-layer="27" to-port="0"/> - <edge from-layer="26" from-port="1" to-layer="27" to-port="1"/> - <edge from-layer="27" from-port="2" to-layer="29" to-port="0"/> - <edge from-layer="28" from-port="0" to-layer="29" to-port="1"/> - <edge from-layer="29" from-port="2" to-layer="31" to-port="0"/> - <edge from-layer="30" from-port="0" to-layer="31" to-port="1"/> - <edge from-layer="31" from-port="2" to-layer="32" to-port="0"/> - <edge from-layer="32" from-port="1" to-layer="34" to-port="0"/> - <edge from-layer="33" from-port="0" to-layer="34" to-port="1"/> - <edge from-layer="34" from-port="2" to-layer="36" to-port="0"/> - <edge from-layer="35" from-port="0" to-layer="36" to-port="1"/> - <edge from-layer="36" from-port="2" to-layer="37" to-port="1"/> - <edge from-layer="37" from-port="2" to-layer="39" to-port="0"/> - <edge from-layer="37" from-port="2" to-layer="42" to-port="0"/> - <edge from-layer="37" from-port="2" to-layer="68" to-port="0"/> - <edge from-layer="38" from-port="0" to-layer="39" to-port="1"/> - <edge from-layer="39" from-port="2" to-layer="41" to-port="0"/> - <edge from-layer="40" from-port="0" to-layer="41" to-port="1"/> - <edge from-layer="41" from-port="2" to-layer="43" to-port="0"/> - <edge from-layer="42" from-port="1" to-layer="43" to-port="1"/> - <edge from-layer="43" from-port="2" to-layer="45" to-port="0"/> - <edge from-layer="44" from-port="0" to-layer="45" to-port="1"/> - <edge from-layer="45" from-port="2" to-layer="47" to-port="0"/> - <edge from-layer="46" from-port="0" to-layer="47" to-port="1"/> - <edge from-layer="47" from-port="2" to-layer="48" to-port="0"/> - <edge from-layer="48" from-port="1" to-layer="50" to-port="0"/> - <edge from-layer="49" from-port="0" to-layer="50" to-port="1"/> - <edge from-layer="50" from-port="2" to-layer="52" to-port="0"/> - <edge from-layer="51" from-port="0" to-layer="52" to-port="1"/> - <edge from-layer="52" from-port="2" to-layer="54" to-port="0"/> - <edge from-layer="52" from-port="2" to-layer="57" to-port="0"/> - <edge from-layer="53" from-port="0" to-layer="54" to-port="1"/> - <edge from-layer="54" from-port="2" to-layer="56" to-port="0"/> - <edge from-layer="55" from-port="0" to-layer="56" to-port="1"/> - <edge from-layer="56" from-port="2" to-layer="58" to-port="0"/> - <edge from-layer="57" from-port="1" to-layer="58" to-port="1"/> - <edge from-layer="58" from-port="2" to-layer="60" to-port="0"/> - <edge from-layer="59" from-port="0" to-layer="60" to-port="1"/> - <edge from-layer="60" from-port="2" to-layer="62" to-port="0"/> - <edge from-layer="61" from-port="0" to-layer="62" to-port="1"/> - <edge from-layer="62" from-port="2" to-layer="63" to-port="0"/> - <edge from-layer="63" from-port="1" to-layer="65" to-port="0"/> - <edge from-layer="64" from-port="0" to-layer="65" to-port="1"/> - <edge from-layer="65" from-port="2" to-layer="67" to-port="0"/> - <edge from-layer="66" from-port="0" to-layer="67" to-port="1"/> - <edge from-layer="67" from-port="2" to-layer="68" to-port="1"/> - <edge from-layer="68" from-port="2" to-layer="70" to-port="0"/> - <edge from-layer="69" from-port="0" to-layer="70" to-port="1"/> - <edge from-layer="70" from-port="2" to-layer="72" to-port="0"/> - <edge from-layer="71" from-port="0" to-layer="72" to-port="1"/> - <edge from-layer="72" from-port="2" to-layer="74" to-port="0"/> - <edge from-layer="72" from-port="2" to-layer="78" to-port="0"/> - <edge from-layer="72" from-port="2" to-layer="81" to-port="0"/> - <edge from-layer="73" from-port="0" to-layer="74" to-port="1"/> - <edge from-layer="74" from-port="2" to-layer="76" to-port="0"/> - <edge from-layer="75" from-port="0" to-layer="76" to-port="1"/> - <edge from-layer="76" from-port="2" to-layer="107" to-port="0"/> - <edge from-layer="77" from-port="0" to-layer="78" to-port="1"/> - <edge from-layer="78" from-port="2" to-layer="80" to-port="0"/> - <edge from-layer="79" from-port="0" to-layer="80" to-port="1"/> - <edge from-layer="80" from-port="2" to-layer="82" to-port="0"/> - <edge from-layer="81" from-port="1" to-layer="82" to-port="1"/> - <edge from-layer="82" from-port="2" to-layer="84" to-port="0"/> - <edge from-layer="83" from-port="0" to-layer="84" to-port="1"/> - <edge from-layer="84" from-port="2" to-layer="86" to-port="0"/> - <edge from-layer="85" from-port="0" to-layer="86" to-port="1"/> - <edge from-layer="86" from-port="2" to-layer="87" to-port="0"/> - <edge from-layer="87" from-port="1" to-layer="89" to-port="0"/> - <edge from-layer="88" from-port="0" to-layer="89" to-port="1"/> - <edge from-layer="89" from-port="2" to-layer="91" to-port="0"/> - <edge from-layer="90" from-port="0" to-layer="91" to-port="1"/> - <edge from-layer="91" from-port="2" to-layer="93" to-port="0"/> - <edge from-layer="91" from-port="2" to-layer="96" to-port="0"/> - <edge from-layer="92" from-port="0" to-layer="93" to-port="1"/> - <edge from-layer="93" from-port="2" to-layer="95" to-port="0"/> - <edge from-layer="94" from-port="0" to-layer="95" to-port="1"/> - <edge from-layer="95" from-port="2" to-layer="97" to-port="0"/> - <edge from-layer="96" from-port="1" to-layer="97" to-port="1"/> - <edge from-layer="97" from-port="2" to-layer="99" to-port="0"/> - <edge from-layer="98" from-port="0" to-layer="99" to-port="1"/> - <edge from-layer="99" from-port="2" to-layer="101" to-port="0"/> - <edge from-layer="100" from-port="0" to-layer="101" to-port="1"/> - <edge from-layer="101" from-port="2" to-layer="102" to-port="0"/> - <edge from-layer="102" from-port="1" to-layer="104" to-port="0"/> - <edge from-layer="103" from-port="0" to-layer="104" to-port="1"/> - <edge from-layer="104" from-port="2" to-layer="106" to-port="0"/> - <edge from-layer="105" from-port="0" to-layer="106" to-port="1"/> - <edge from-layer="106" from-port="2" to-layer="107" to-port="1"/> - <edge from-layer="107" from-port="2" to-layer="109" to-port="0"/> - <edge from-layer="107" from-port="2" to-layer="112" to-port="0"/> - <edge from-layer="107" from-port="2" to-layer="138" to-port="0"/> - <edge from-layer="108" from-port="0" to-layer="109" to-port="1"/> - <edge from-layer="109" from-port="2" to-layer="111" to-port="0"/> - <edge from-layer="110" from-port="0" to-layer="111" to-port="1"/> - <edge from-layer="111" from-port="2" to-layer="113" to-port="0"/> - <edge from-layer="112" from-port="1" to-layer="113" to-port="1"/> - <edge from-layer="113" from-port="2" to-layer="115" to-port="0"/> - <edge from-layer="114" from-port="0" to-layer="115" to-port="1"/> - <edge from-layer="115" from-port="2" to-layer="117" to-port="0"/> - <edge from-layer="116" from-port="0" to-layer="117" to-port="1"/> - <edge from-layer="117" from-port="2" to-layer="118" to-port="0"/> - <edge from-layer="118" from-port="1" to-layer="120" to-port="0"/> - <edge from-layer="119" from-port="0" to-layer="120" to-port="1"/> - <edge from-layer="120" from-port="2" to-layer="122" to-port="0"/> - <edge from-layer="121" from-port="0" to-layer="122" to-port="1"/> - <edge from-layer="122" from-port="2" to-layer="124" to-port="0"/> - <edge from-layer="122" from-port="2" to-layer="127" to-port="0"/> - <edge from-layer="123" from-port="0" to-layer="124" to-port="1"/> - <edge from-layer="124" from-port="2" to-layer="126" to-port="0"/> - <edge from-layer="125" from-port="0" to-layer="126" to-port="1"/> - <edge from-layer="126" from-port="2" to-layer="128" to-port="0"/> - <edge from-layer="127" from-port="1" to-layer="128" to-port="1"/> - <edge from-layer="128" from-port="2" to-layer="130" to-port="0"/> - <edge from-layer="129" from-port="0" to-layer="130" to-port="1"/> - <edge from-layer="130" from-port="2" to-layer="132" to-port="0"/> - <edge from-layer="131" from-port="0" to-layer="132" to-port="1"/> - <edge from-layer="132" from-port="2" to-layer="133" to-port="0"/> - <edge from-layer="133" from-port="1" to-layer="135" to-port="0"/> - <edge from-layer="134" from-port="0" to-layer="135" to-port="1"/> - <edge from-layer="135" from-port="2" to-layer="137" to-port="0"/> - <edge from-layer="136" from-port="0" to-layer="137" to-port="1"/> - <edge from-layer="137" from-port="2" to-layer="138" to-port="1"/> - <edge from-layer="138" from-port="2" to-layer="140" to-port="0"/> - <edge from-layer="139" from-port="0" to-layer="140" to-port="1"/> - <edge from-layer="140" from-port="2" to-layer="142" to-port="0"/> - <edge from-layer="141" from-port="0" to-layer="142" to-port="1"/> - <edge from-layer="142" from-port="2" to-layer="148" to-port="0"/> - <edge from-layer="142" from-port="2" to-layer="151" to-port="0"/> - <edge from-layer="142" from-port="2" to-layer="144" to-port="0"/> - <edge from-layer="143" from-port="0" to-layer="144" to-port="1"/> - <edge from-layer="144" from-port="2" to-layer="146" to-port="0"/> - <edge from-layer="145" from-port="0" to-layer="146" to-port="1"/> - <edge from-layer="146" from-port="2" to-layer="177" to-port="0"/> - <edge from-layer="147" from-port="0" to-layer="148" to-port="1"/> - <edge from-layer="148" from-port="2" to-layer="150" to-port="0"/> - <edge from-layer="149" from-port="0" to-layer="150" to-port="1"/> - <edge from-layer="150" from-port="2" to-layer="152" to-port="0"/> - <edge from-layer="151" from-port="1" to-layer="152" to-port="1"/> - <edge from-layer="152" from-port="2" to-layer="154" to-port="0"/> - <edge from-layer="153" from-port="0" to-layer="154" to-port="1"/> - <edge from-layer="154" from-port="2" to-layer="156" to-port="0"/> - <edge from-layer="155" from-port="0" to-layer="156" to-port="1"/> - <edge from-layer="156" from-port="2" to-layer="157" to-port="0"/> - <edge from-layer="157" from-port="1" to-layer="159" to-port="0"/> - <edge from-layer="158" from-port="0" to-layer="159" to-port="1"/> - <edge from-layer="159" from-port="2" to-layer="161" to-port="0"/> - <edge from-layer="160" from-port="0" to-layer="161" to-port="1"/> - <edge from-layer="161" from-port="2" to-layer="163" to-port="0"/> - <edge from-layer="161" from-port="2" to-layer="166" to-port="0"/> - <edge from-layer="162" from-port="0" to-layer="163" to-port="1"/> - <edge from-layer="163" from-port="2" to-layer="165" to-port="0"/> - <edge from-layer="164" from-port="0" to-layer="165" to-port="1"/> - <edge from-layer="165" from-port="2" to-layer="167" to-port="0"/> - <edge from-layer="166" from-port="1" to-layer="167" to-port="1"/> - <edge from-layer="167" from-port="2" to-layer="169" to-port="0"/> - <edge from-layer="168" from-port="0" to-layer="169" to-port="1"/> - <edge from-layer="169" from-port="2" to-layer="171" to-port="0"/> - <edge from-layer="170" from-port="0" to-layer="171" to-port="1"/> - <edge from-layer="171" from-port="2" to-layer="172" to-port="0"/> - <edge from-layer="172" from-port="1" to-layer="174" to-port="0"/> - <edge from-layer="173" from-port="0" to-layer="174" to-port="1"/> - <edge from-layer="174" from-port="2" to-layer="176" to-port="0"/> - <edge from-layer="175" from-port="0" to-layer="176" to-port="1"/> - <edge from-layer="176" from-port="2" to-layer="177" to-port="1"/> - <edge from-layer="177" from-port="2" to-layer="179" to-port="0"/> - <edge from-layer="177" from-port="2" to-layer="182" to-port="0"/> - <edge from-layer="177" from-port="2" to-layer="208" to-port="0"/> - <edge from-layer="178" from-port="0" to-layer="179" to-port="1"/> - <edge from-layer="179" from-port="2" to-layer="181" to-port="0"/> - <edge from-layer="180" from-port="0" to-layer="181" to-port="1"/> - <edge from-layer="181" from-port="2" to-layer="183" to-port="0"/> - <edge from-layer="182" from-port="1" to-layer="183" to-port="1"/> - <edge from-layer="183" from-port="2" to-layer="185" to-port="0"/> - <edge from-layer="184" from-port="0" to-layer="185" to-port="1"/> - <edge from-layer="185" from-port="2" to-layer="187" to-port="0"/> - <edge from-layer="186" from-port="0" to-layer="187" to-port="1"/> - <edge from-layer="187" from-port="2" to-layer="188" to-port="0"/> - <edge from-layer="188" from-port="1" to-layer="190" to-port="0"/> - <edge from-layer="189" from-port="0" to-layer="190" to-port="1"/> - <edge from-layer="190" from-port="2" to-layer="192" to-port="0"/> - <edge from-layer="191" from-port="0" to-layer="192" to-port="1"/> - <edge from-layer="192" from-port="2" to-layer="194" to-port="0"/> - <edge from-layer="192" from-port="2" to-layer="197" to-port="0"/> - <edge from-layer="193" from-port="0" to-layer="194" to-port="1"/> - <edge from-layer="194" from-port="2" to-layer="196" to-port="0"/> - <edge from-layer="195" from-port="0" to-layer="196" to-port="1"/> - <edge from-layer="196" from-port="2" to-layer="198" to-port="0"/> - <edge from-layer="197" from-port="1" to-layer="198" to-port="1"/> - <edge from-layer="198" from-port="2" to-layer="200" to-port="0"/> - <edge from-layer="199" from-port="0" to-layer="200" to-port="1"/> - <edge from-layer="200" from-port="2" to-layer="202" to-port="0"/> - <edge from-layer="201" from-port="0" to-layer="202" to-port="1"/> - <edge from-layer="202" from-port="2" to-layer="203" to-port="0"/> - <edge from-layer="203" from-port="1" to-layer="205" to-port="0"/> - <edge from-layer="204" from-port="0" to-layer="205" to-port="1"/> - <edge from-layer="205" from-port="2" to-layer="207" to-port="0"/> - <edge from-layer="206" from-port="0" to-layer="207" to-port="1"/> - <edge from-layer="207" from-port="2" to-layer="208" to-port="1"/> - <edge from-layer="208" from-port="2" to-layer="210" to-port="0"/> - <edge from-layer="209" from-port="0" to-layer="210" to-port="1"/> - <edge from-layer="210" from-port="2" to-layer="212" to-port="0"/> - <edge from-layer="211" from-port="0" to-layer="212" to-port="1"/> - <edge from-layer="212" from-port="2" to-layer="214" to-port="0"/> - <edge from-layer="212" from-port="2" to-layer="217" to-port="0"/> - <edge from-layer="212" from-port="2" to-layer="243" to-port="0"/> - <edge from-layer="213" from-port="0" to-layer="214" to-port="1"/> - <edge from-layer="214" from-port="2" to-layer="216" to-port="0"/> - <edge from-layer="215" from-port="0" to-layer="216" to-port="1"/> - <edge from-layer="216" from-port="2" to-layer="218" to-port="0"/> - <edge from-layer="217" from-port="1" to-layer="218" to-port="1"/> - <edge from-layer="218" from-port="2" to-layer="220" to-port="0"/> - <edge from-layer="219" from-port="0" to-layer="220" to-port="1"/> - <edge from-layer="220" from-port="2" to-layer="222" to-port="0"/> - <edge from-layer="221" from-port="0" to-layer="222" to-port="1"/> - <edge from-layer="222" from-port="2" to-layer="223" to-port="0"/> - <edge from-layer="223" from-port="1" to-layer="225" to-port="0"/> - <edge from-layer="224" from-port="0" to-layer="225" to-port="1"/> - <edge from-layer="225" from-port="2" to-layer="227" to-port="0"/> - <edge from-layer="226" from-port="0" to-layer="227" to-port="1"/> - <edge from-layer="227" from-port="2" to-layer="229" to-port="0"/> - <edge from-layer="227" from-port="2" to-layer="232" to-port="0"/> - <edge from-layer="228" from-port="0" to-layer="229" to-port="1"/> - <edge from-layer="229" from-port="2" to-layer="231" to-port="0"/> - <edge from-layer="230" from-port="0" to-layer="231" to-port="1"/> - <edge from-layer="231" from-port="2" to-layer="233" to-port="0"/> - <edge from-layer="232" from-port="1" to-layer="233" to-port="1"/> - <edge from-layer="233" from-port="2" to-layer="235" to-port="0"/> - <edge from-layer="234" from-port="0" to-layer="235" to-port="1"/> - <edge from-layer="235" from-port="2" to-layer="237" to-port="0"/> - <edge from-layer="236" from-port="0" to-layer="237" to-port="1"/> - <edge from-layer="237" from-port="2" to-layer="238" to-port="0"/> - <edge from-layer="238" from-port="1" to-layer="240" to-port="0"/> - <edge from-layer="239" from-port="0" to-layer="240" to-port="1"/> - <edge from-layer="240" from-port="2" to-layer="242" to-port="0"/> - <edge from-layer="241" from-port="0" to-layer="242" to-port="1"/> - <edge from-layer="242" from-port="2" to-layer="243" to-port="1"/> - <edge from-layer="243" from-port="2" to-layer="245" to-port="0"/> - <edge from-layer="243" from-port="2" to-layer="248" to-port="0"/> - <edge from-layer="243" from-port="2" to-layer="274" to-port="0"/> - <edge from-layer="244" from-port="0" to-layer="245" to-port="1"/> - <edge from-layer="245" from-port="2" to-layer="247" to-port="0"/> - <edge from-layer="246" from-port="0" to-layer="247" to-port="1"/> - <edge from-layer="247" from-port="2" to-layer="249" to-port="0"/> - <edge from-layer="248" from-port="1" to-layer="249" to-port="1"/> - <edge from-layer="249" from-port="2" to-layer="251" to-port="0"/> - <edge from-layer="250" from-port="0" to-layer="251" to-port="1"/> - <edge from-layer="251" from-port="2" to-layer="253" to-port="0"/> - <edge from-layer="252" from-port="0" to-layer="253" to-port="1"/> - <edge from-layer="253" from-port="2" to-layer="254" to-port="0"/> - <edge from-layer="254" from-port="1" to-layer="256" to-port="0"/> - <edge from-layer="255" from-port="0" to-layer="256" to-port="1"/> - <edge from-layer="256" from-port="2" to-layer="258" to-port="0"/> - <edge from-layer="257" from-port="0" to-layer="258" to-port="1"/> - <edge from-layer="258" from-port="2" to-layer="260" to-port="0"/> - <edge from-layer="258" from-port="2" to-layer="263" to-port="0"/> - <edge from-layer="259" from-port="0" to-layer="260" to-port="1"/> - <edge from-layer="260" from-port="2" to-layer="262" to-port="0"/> - <edge from-layer="261" from-port="0" to-layer="262" to-port="1"/> - <edge from-layer="262" from-port="2" to-layer="264" to-port="0"/> - <edge from-layer="263" from-port="1" to-layer="264" to-port="1"/> - <edge from-layer="264" from-port="2" to-layer="266" to-port="0"/> - <edge from-layer="265" from-port="0" to-layer="266" to-port="1"/> - <edge from-layer="266" from-port="2" to-layer="268" to-port="0"/> - <edge from-layer="267" from-port="0" to-layer="268" to-port="1"/> - <edge from-layer="268" from-port="2" to-layer="269" to-port="0"/> - <edge from-layer="269" from-port="1" to-layer="271" to-port="0"/> - <edge from-layer="270" from-port="0" to-layer="271" to-port="1"/> - <edge from-layer="271" from-port="2" to-layer="273" to-port="0"/> - <edge from-layer="272" from-port="0" to-layer="273" to-port="1"/> - <edge from-layer="273" from-port="2" to-layer="274" to-port="1"/> - <edge from-layer="274" from-port="2" to-layer="276" to-port="0"/> - <edge from-layer="274" from-port="2" to-layer="279" to-port="0"/> - <edge from-layer="274" from-port="2" to-layer="305" to-port="0"/> - <edge from-layer="275" from-port="0" to-layer="276" to-port="1"/> - <edge from-layer="276" from-port="2" to-layer="278" to-port="0"/> - <edge from-layer="277" from-port="0" to-layer="278" to-port="1"/> - <edge from-layer="278" from-port="2" to-layer="280" to-port="0"/> - <edge from-layer="279" from-port="1" to-layer="280" to-port="1"/> - <edge from-layer="280" from-port="2" to-layer="282" to-port="0"/> - <edge from-layer="281" from-port="0" to-layer="282" to-port="1"/> - <edge from-layer="282" from-port="2" to-layer="284" to-port="0"/> - <edge from-layer="283" from-port="0" to-layer="284" to-port="1"/> - <edge from-layer="284" from-port="2" to-layer="285" to-port="0"/> - <edge from-layer="285" from-port="1" to-layer="287" to-port="0"/> - <edge from-layer="286" from-port="0" to-layer="287" to-port="1"/> - <edge from-layer="287" from-port="2" to-layer="289" to-port="0"/> - <edge from-layer="288" from-port="0" to-layer="289" to-port="1"/> - <edge from-layer="289" from-port="2" to-layer="291" to-port="0"/> - <edge from-layer="289" from-port="2" to-layer="294" to-port="0"/> - <edge from-layer="290" from-port="0" to-layer="291" to-port="1"/> - <edge from-layer="291" from-port="2" to-layer="293" to-port="0"/> - <edge from-layer="292" from-port="0" to-layer="293" to-port="1"/> - <edge from-layer="293" from-port="2" to-layer="295" to-port="0"/> - <edge from-layer="294" from-port="1" to-layer="295" to-port="1"/> - <edge from-layer="295" from-port="2" to-layer="297" to-port="0"/> - <edge from-layer="296" from-port="0" to-layer="297" to-port="1"/> - <edge from-layer="297" from-port="2" to-layer="299" to-port="0"/> - <edge from-layer="298" from-port="0" to-layer="299" to-port="1"/> - <edge from-layer="299" from-port="2" to-layer="300" to-port="0"/> - <edge from-layer="300" from-port="1" to-layer="302" to-port="0"/> - <edge from-layer="301" from-port="0" to-layer="302" to-port="1"/> - <edge from-layer="302" from-port="2" to-layer="304" to-port="0"/> - <edge from-layer="303" from-port="0" to-layer="304" to-port="1"/> - <edge from-layer="304" from-port="2" to-layer="305" to-port="1"/> - <edge from-layer="305" from-port="2" to-layer="310" to-port="0"/> - <edge from-layer="305" from-port="2" to-layer="372" to-port="1"/> - <edge from-layer="305" from-port="2" to-layer="307" to-port="0"/> - <edge from-layer="306" from-port="0" to-layer="307" to-port="1"/> - <edge from-layer="307" from-port="2" to-layer="309" to-port="0"/> - <edge from-layer="308" from-port="0" to-layer="309" to-port="1"/> - <edge from-layer="309" from-port="2" to-layer="311" to-port="0"/> - <edge from-layer="310" from-port="1" to-layer="311" to-port="1"/> - <edge from-layer="310" from-port="1" to-layer="318" to-port="0"/> - <edge from-layer="310" from-port="1" to-layer="321" to-port="0"/> - <edge from-layer="310" from-port="1" to-layer="324" to-port="0"/> - <edge from-layer="310" from-port="1" to-layer="371" to-port="1"/> - <edge from-layer="311" from-port="2" to-layer="313" to-port="0"/> - <edge from-layer="312" from-port="0" to-layer="313" to-port="1"/> - <edge from-layer="313" from-port="2" to-layer="315" to-port="0"/> - <edge from-layer="314" from-port="0" to-layer="315" to-port="1"/> - <edge from-layer="315" from-port="2" to-layer="329" to-port="0"/> - <edge from-layer="316" from-port="0" to-layer="318" to-port="1"/> - <edge from-layer="317" from-port="0" to-layer="318" to-port="2"/> - <edge from-layer="318" from-port="3" to-layer="328" to-port="0"/> - <edge from-layer="319" from-port="0" to-layer="321" to-port="1"/> - <edge from-layer="320" from-port="0" to-layer="321" to-port="2"/> - <edge from-layer="321" from-port="3" to-layer="325" to-port="0"/> - <edge from-layer="322" from-port="0" to-layer="324" to-port="1"/> - <edge from-layer="323" from-port="0" to-layer="324" to-port="2"/> - <edge from-layer="324" from-port="3" to-layer="325" to-port="1"/> - <edge from-layer="325" from-port="2" to-layer="327" to-port="0"/> - <edge from-layer="326" from-port="0" to-layer="327" to-port="1"/> - <edge from-layer="327" from-port="2" to-layer="328" to-port="1"/> - <edge from-layer="328" from-port="2" to-layer="329" to-port="1"/> - <edge from-layer="329" from-port="2" to-layer="331" to-port="0"/> - <edge from-layer="330" from-port="0" to-layer="331" to-port="1"/> - <edge from-layer="331" from-port="2" to-layer="333" to-port="0"/> - <edge from-layer="331" from-port="2" to-layer="343" to-port="0"/> - <edge from-layer="331" from-port="2" to-layer="355" to-port="0"/> - <edge from-layer="332" from-port="0" to-layer="333" to-port="1"/> - <edge from-layer="333" from-port="2" to-layer="334" to-port="1"/> - <edge from-layer="334" from-port="2" to-layer="336" to-port="0"/> - <edge from-layer="335" from-port="0" to-layer="336" to-port="1"/> - <edge from-layer="336" from-port="2" to-layer="338" to-port="0"/> - <edge from-layer="337" from-port="0" to-layer="338" to-port="1"/> - <edge from-layer="338" from-port="2" to-layer="340" to-port="0"/> - <edge from-layer="339" from-port="0" to-layer="340" to-port="1"/> - <edge from-layer="340" from-port="2" to-layer="351" to-port="0"/> - <edge from-layer="341" from-port="0" to-layer="344" to-port="0"/> - <edge from-layer="342" from-port="0" to-layer="343" to-port="1"/> - <edge from-layer="343" from-port="2" to-layer="344" to-port="1"/> - <edge from-layer="344" from-port="2" to-layer="346" to-port="0"/> - <edge from-layer="345" from-port="0" to-layer="346" to-port="1"/> - <edge from-layer="346" from-port="2" to-layer="348" to-port="0"/> - <edge from-layer="347" from-port="0" to-layer="348" to-port="1"/> - <edge from-layer="348" from-port="2" to-layer="350" to-port="0"/> - <edge from-layer="349" from-port="0" to-layer="350" to-port="1"/> - <edge from-layer="350" from-port="2" to-layer="351" to-port="1"/> - <edge from-layer="351" from-port="2" to-layer="352" to-port="0"/> - <edge from-layer="352" from-port="1" to-layer="361" to-port="0"/> - <edge from-layer="353" from-port="0" to-layer="356" to-port="0"/> - <edge from-layer="354" from-port="0" to-layer="355" to-port="1"/> - <edge from-layer="355" from-port="2" to-layer="356" to-port="1"/> - <edge from-layer="356" from-port="2" to-layer="358" to-port="0"/> - <edge from-layer="357" from-port="0" to-layer="358" to-port="1"/> - <edge from-layer="358" from-port="2" to-layer="360" to-port="0"/> - <edge from-layer="359" from-port="0" to-layer="360" to-port="1"/> - <edge from-layer="360" from-port="2" to-layer="361" to-port="1"/> - <edge from-layer="361" from-port="2" to-layer="363" to-port="0"/> - <edge from-layer="362" from-port="0" to-layer="363" to-port="1"/> - <edge from-layer="363" from-port="2" to-layer="365" to-port="0"/> - <edge from-layer="364" from-port="0" to-layer="365" to-port="1"/> - <edge from-layer="365" from-port="2" to-layer="367" to-port="0"/> - <edge from-layer="366" from-port="0" to-layer="367" to-port="1"/> - <edge from-layer="367" from-port="2" to-layer="368" to-port="1"/> - <edge from-layer="368" from-port="2" to-layer="370" to-port="0"/> - <edge from-layer="369" from-port="0" to-layer="370" to-port="1"/> - <edge from-layer="370" from-port="2" to-layer="371" to-port="0"/> - <edge from-layer="371" from-port="2" to-layer="372" to-port="0"/> - <edge from-layer="372" from-port="2" to-layer="374" to-port="0"/> - <edge from-layer="372" from-port="2" to-layer="403" to-port="0"/> - <edge from-layer="372" from-port="2" to-layer="377" to-port="0"/> - <edge from-layer="373" from-port="0" to-layer="374" to-port="1"/> - <edge from-layer="374" from-port="2" to-layer="376" to-port="0"/> - <edge from-layer="375" from-port="0" to-layer="376" to-port="1"/> - <edge from-layer="376" from-port="2" to-layer="378" to-port="0"/> - <edge from-layer="377" from-port="1" to-layer="378" to-port="1"/> - <edge from-layer="378" from-port="2" to-layer="380" to-port="0"/> - <edge from-layer="379" from-port="0" to-layer="380" to-port="1"/> - <edge from-layer="380" from-port="2" to-layer="382" to-port="0"/> - <edge from-layer="381" from-port="0" to-layer="382" to-port="1"/> - <edge from-layer="382" from-port="2" to-layer="383" to-port="0"/> - <edge from-layer="383" from-port="1" to-layer="385" to-port="0"/> - <edge from-layer="384" from-port="0" to-layer="385" to-port="1"/> - <edge from-layer="385" from-port="2" to-layer="387" to-port="0"/> - <edge from-layer="386" from-port="0" to-layer="387" to-port="1"/> - <edge from-layer="387" from-port="2" to-layer="389" to-port="0"/> - <edge from-layer="387" from-port="2" to-layer="392" to-port="0"/> - <edge from-layer="388" from-port="0" to-layer="389" to-port="1"/> - <edge from-layer="389" from-port="2" to-layer="391" to-port="0"/> - <edge from-layer="390" from-port="0" to-layer="391" to-port="1"/> - <edge from-layer="391" from-port="2" to-layer="393" to-port="0"/> - <edge from-layer="392" from-port="1" to-layer="393" to-port="1"/> - <edge from-layer="393" from-port="2" to-layer="395" to-port="0"/> - <edge from-layer="394" from-port="0" to-layer="395" to-port="1"/> - <edge from-layer="395" from-port="2" to-layer="397" to-port="0"/> - <edge from-layer="396" from-port="0" to-layer="397" to-port="1"/> - <edge from-layer="397" from-port="2" to-layer="398" to-port="0"/> - <edge from-layer="398" from-port="1" to-layer="400" to-port="0"/> - <edge from-layer="399" from-port="0" to-layer="400" to-port="1"/> - <edge from-layer="400" from-port="2" to-layer="402" to-port="0"/> - <edge from-layer="401" from-port="0" to-layer="402" to-port="1"/> - <edge from-layer="402" from-port="2" to-layer="403" to-port="1"/> - <edge from-layer="403" from-port="2" to-layer="405" to-port="0"/> - <edge from-layer="403" from-port="2" to-layer="408" to-port="0"/> - <edge from-layer="404" from-port="0" to-layer="405" to-port="1"/> - <edge from-layer="405" from-port="2" to-layer="407" to-port="0"/> - <edge from-layer="406" from-port="0" to-layer="407" to-port="1"/> - <edge from-layer="407" from-port="2" to-layer="409" to-port="0"/> - <edge from-layer="408" from-port="1" to-layer="409" to-port="1"/> - <edge from-layer="409" from-port="2" to-layer="411" to-port="0"/> - <edge from-layer="410" from-port="0" to-layer="411" to-port="1"/> - <edge from-layer="411" from-port="2" to-layer="413" to-port="0"/> - <edge from-layer="412" from-port="0" to-layer="413" to-port="1"/> - <edge from-layer="413" from-port="2" to-layer="414" to-port="0"/> - <edge from-layer="414" from-port="1" to-layer="416" to-port="0"/> - <edge from-layer="415" from-port="0" to-layer="416" to-port="1"/> - <edge from-layer="416" from-port="2" to-layer="418" to-port="0"/> - <edge from-layer="417" from-port="0" to-layer="418" to-port="1"/> - <edge from-layer="418" from-port="2" to-layer="420" to-port="0"/> - <edge from-layer="419" from-port="0" to-layer="420" to-port="1"/> - <edge from-layer="420" from-port="2" to-layer="422" to-port="0"/> - <edge from-layer="421" from-port="0" to-layer="422" to-port="1"/> - <edge from-layer="422" from-port="2" to-layer="423" to-port="0"/> + <edge from-layer="0" from-port="0" to-layer="7" to-port="0" /> + <edge from-layer="1" from-port="0" to-layer="2" to-port="0" /> + <edge from-layer="2" from-port="1" to-layer="537" to-port="0" /> + <edge from-layer="3" from-port="0" to-layer="4" to-port="0" /> + <edge from-layer="4" from-port="1" to-layer="421" to-port="0" /> + <edge from-layer="5" from-port="0" to-layer="6" to-port="0" /> + <edge from-layer="6" from-port="1" to-layer="7" to-port="1" /> + <edge from-layer="7" from-port="2" to-layer="10" to-port="0" /> + <edge from-layer="8" from-port="0" to-layer="9" to-port="0" /> + <edge from-layer="9" from-port="1" to-layer="10" to-port="1" /> + <edge from-layer="10" from-port="2" to-layer="12" to-port="0" /> + <edge from-layer="10" from-port="2" to-layer="15" to-port="0" /> + <edge from-layer="10" from-port="2" to-layer="49" to-port="0" /> + <edge from-layer="11" from-port="0" to-layer="12" to-port="1" /> + <edge from-layer="12" from-port="2" to-layer="14" to-port="0" /> + <edge from-layer="13" from-port="0" to-layer="14" to-port="1" /> + <edge from-layer="14" from-port="2" to-layer="16" to-port="0" /> + <edge from-layer="15" from-port="1" to-layer="16" to-port="1" /> + <edge from-layer="16" from-port="2" to-layer="19" to-port="0" /> + <edge from-layer="17" from-port="0" to-layer="18" to-port="0" /> + <edge from-layer="18" from-port="1" to-layer="19" to-port="1" /> + <edge from-layer="19" from-port="2" to-layer="22" to-port="0" /> + <edge from-layer="20" from-port="0" to-layer="21" to-port="0" /> + <edge from-layer="21" from-port="1" to-layer="22" to-port="1" /> + <edge from-layer="22" from-port="2" to-layer="23" to-port="0" /> + <edge from-layer="23" from-port="1" to-layer="26" to-port="0" /> + <edge from-layer="24" from-port="0" to-layer="25" to-port="0" /> + <edge from-layer="25" from-port="1" to-layer="26" to-port="1" /> + <edge from-layer="26" from-port="2" to-layer="29" to-port="0" /> + <edge from-layer="27" from-port="0" to-layer="28" to-port="0" /> + <edge from-layer="28" from-port="1" to-layer="29" to-port="1" /> + <edge from-layer="29" from-port="2" to-layer="31" to-port="0" /> + <edge from-layer="29" from-port="2" to-layer="34" to-port="0" /> + <edge from-layer="30" from-port="0" to-layer="31" to-port="1" /> + <edge from-layer="31" from-port="2" to-layer="33" to-port="0" /> + <edge from-layer="32" from-port="0" to-layer="33" to-port="1" /> + <edge from-layer="33" from-port="2" to-layer="35" to-port="0" /> + <edge from-layer="34" from-port="1" to-layer="35" to-port="1" /> + <edge from-layer="35" from-port="2" to-layer="38" to-port="0" /> + <edge from-layer="36" from-port="0" to-layer="37" to-port="0" /> + <edge from-layer="37" from-port="1" to-layer="38" to-port="1" /> + <edge from-layer="38" from-port="2" to-layer="41" to-port="0" /> + <edge from-layer="39" from-port="0" to-layer="40" to-port="0" /> + <edge from-layer="40" from-port="1" to-layer="41" to-port="1" /> + <edge from-layer="41" from-port="2" to-layer="42" to-port="0" /> + <edge from-layer="42" from-port="1" to-layer="45" to-port="0" /> + <edge from-layer="43" from-port="0" to-layer="44" to-port="0" /> + <edge from-layer="44" from-port="1" to-layer="45" to-port="1" /> + <edge from-layer="45" from-port="2" to-layer="48" to-port="0" /> + <edge from-layer="46" from-port="0" to-layer="47" to-port="0" /> + <edge from-layer="47" from-port="1" to-layer="48" to-port="1" /> + <edge from-layer="48" from-port="2" to-layer="49" to-port="1" /> + <edge from-layer="49" from-port="2" to-layer="51" to-port="0" /> + <edge from-layer="49" from-port="2" to-layer="54" to-port="0" /> + <edge from-layer="49" from-port="2" to-layer="88" to-port="0" /> + <edge from-layer="50" from-port="0" to-layer="51" to-port="1" /> + <edge from-layer="51" from-port="2" to-layer="53" to-port="0" /> + <edge from-layer="52" from-port="0" to-layer="53" to-port="1" /> + <edge from-layer="53" from-port="2" to-layer="55" to-port="0" /> + <edge from-layer="54" from-port="1" to-layer="55" to-port="1" /> + <edge from-layer="55" from-port="2" to-layer="58" to-port="0" /> + <edge from-layer="56" from-port="0" to-layer="57" to-port="0" /> + <edge from-layer="57" from-port="1" to-layer="58" to-port="1" /> + <edge from-layer="58" from-port="2" to-layer="61" to-port="0" /> + <edge from-layer="59" from-port="0" to-layer="60" to-port="0" /> + <edge from-layer="60" from-port="1" to-layer="61" to-port="1" /> + <edge from-layer="61" from-port="2" to-layer="62" to-port="0" /> + <edge from-layer="62" from-port="1" to-layer="65" to-port="0" /> + <edge from-layer="63" from-port="0" to-layer="64" to-port="0" /> + <edge from-layer="64" from-port="1" to-layer="65" to-port="1" /> + <edge from-layer="65" from-port="2" to-layer="68" to-port="0" /> + <edge from-layer="66" from-port="0" to-layer="67" to-port="0" /> + <edge from-layer="67" from-port="1" to-layer="68" to-port="1" /> + <edge from-layer="68" from-port="2" to-layer="70" to-port="0" /> + <edge from-layer="68" from-port="2" to-layer="73" to-port="0" /> + <edge from-layer="69" from-port="0" to-layer="70" to-port="1" /> + <edge from-layer="70" from-port="2" to-layer="72" to-port="0" /> + <edge from-layer="71" from-port="0" to-layer="72" to-port="1" /> + <edge from-layer="72" from-port="2" to-layer="74" to-port="0" /> + <edge from-layer="73" from-port="1" to-layer="74" to-port="1" /> + <edge from-layer="74" from-port="2" to-layer="77" to-port="0" /> + <edge from-layer="75" from-port="0" to-layer="76" to-port="0" /> + <edge from-layer="76" from-port="1" to-layer="77" to-port="1" /> + <edge from-layer="77" from-port="2" to-layer="80" to-port="0" /> + <edge from-layer="78" from-port="0" to-layer="79" to-port="0" /> + <edge from-layer="79" from-port="1" to-layer="80" to-port="1" /> + <edge from-layer="80" from-port="2" to-layer="81" to-port="0" /> + <edge from-layer="81" from-port="1" to-layer="84" to-port="0" /> + <edge from-layer="82" from-port="0" to-layer="83" to-port="0" /> + <edge from-layer="83" from-port="1" to-layer="84" to-port="1" /> + <edge from-layer="84" from-port="2" to-layer="87" to-port="0" /> + <edge from-layer="85" from-port="0" to-layer="86" to-port="0" /> + <edge from-layer="86" from-port="1" to-layer="87" to-port="1" /> + <edge from-layer="87" from-port="2" to-layer="88" to-port="1" /> + <edge from-layer="88" from-port="2" to-layer="91" to-port="0" /> + <edge from-layer="89" from-port="0" to-layer="90" to-port="0" /> + <edge from-layer="90" from-port="1" to-layer="91" to-port="1" /> + <edge from-layer="91" from-port="2" to-layer="94" to-port="0" /> + <edge from-layer="92" from-port="0" to-layer="93" to-port="0" /> + <edge from-layer="93" from-port="1" to-layer="94" to-port="1" /> + <edge from-layer="94" from-port="2" to-layer="97" to-port="0" /> + <edge from-layer="94" from-port="2" to-layer="105" to-port="0" /> + <edge from-layer="94" from-port="2" to-layer="102" to-port="0" /> + <edge from-layer="95" from-port="0" to-layer="96" to-port="0" /> + <edge from-layer="96" from-port="1" to-layer="97" to-port="1" /> + <edge from-layer="97" from-port="2" to-layer="100" to-port="0" /> + <edge from-layer="98" from-port="0" to-layer="99" to-port="0" /> + <edge from-layer="99" from-port="1" to-layer="100" to-port="1" /> + <edge from-layer="100" from-port="2" to-layer="139" to-port="0" /> + <edge from-layer="101" from-port="0" to-layer="102" to-port="1" /> + <edge from-layer="102" from-port="2" to-layer="104" to-port="0" /> + <edge from-layer="103" from-port="0" to-layer="104" to-port="1" /> + <edge from-layer="104" from-port="2" to-layer="106" to-port="0" /> + <edge from-layer="105" from-port="1" to-layer="106" to-port="1" /> + <edge from-layer="106" from-port="2" to-layer="109" to-port="0" /> + <edge from-layer="107" from-port="0" to-layer="108" to-port="0" /> + <edge from-layer="108" from-port="1" to-layer="109" to-port="1" /> + <edge from-layer="109" from-port="2" to-layer="112" to-port="0" /> + <edge from-layer="110" from-port="0" to-layer="111" to-port="0" /> + <edge from-layer="111" from-port="1" to-layer="112" to-port="1" /> + <edge from-layer="112" from-port="2" to-layer="113" to-port="0" /> + <edge from-layer="113" from-port="1" to-layer="116" to-port="0" /> + <edge from-layer="114" from-port="0" to-layer="115" to-port="0" /> + <edge from-layer="115" from-port="1" to-layer="116" to-port="1" /> + <edge from-layer="116" from-port="2" to-layer="119" to-port="0" /> + <edge from-layer="117" from-port="0" to-layer="118" to-port="0" /> + <edge from-layer="118" from-port="1" to-layer="119" to-port="1" /> + <edge from-layer="119" from-port="2" to-layer="121" to-port="0" /> + <edge from-layer="119" from-port="2" to-layer="124" to-port="0" /> + <edge from-layer="120" from-port="0" to-layer="121" to-port="1" /> + <edge from-layer="121" from-port="2" to-layer="123" to-port="0" /> + <edge from-layer="122" from-port="0" to-layer="123" to-port="1" /> + <edge from-layer="123" from-port="2" to-layer="125" to-port="0" /> + <edge from-layer="124" from-port="1" to-layer="125" to-port="1" /> + <edge from-layer="125" from-port="2" to-layer="128" to-port="0" /> + <edge from-layer="126" from-port="0" to-layer="127" to-port="0" /> + <edge from-layer="127" from-port="1" to-layer="128" to-port="1" /> + <edge from-layer="128" from-port="2" to-layer="131" to-port="0" /> + <edge from-layer="129" from-port="0" to-layer="130" to-port="0" /> + <edge from-layer="130" from-port="1" to-layer="131" to-port="1" /> + <edge from-layer="131" from-port="2" to-layer="132" to-port="0" /> + <edge from-layer="132" from-port="1" to-layer="135" to-port="0" /> + <edge from-layer="133" from-port="0" to-layer="134" to-port="0" /> + <edge from-layer="134" from-port="1" to-layer="135" to-port="1" /> + <edge from-layer="135" from-port="2" to-layer="138" to-port="0" /> + <edge from-layer="136" from-port="0" to-layer="137" to-port="0" /> + <edge from-layer="137" from-port="1" to-layer="138" to-port="1" /> + <edge from-layer="138" from-port="2" to-layer="139" to-port="1" /> + <edge from-layer="139" from-port="2" to-layer="178" to-port="0" /> + <edge from-layer="139" from-port="2" to-layer="141" to-port="0" /> + <edge from-layer="139" from-port="2" to-layer="144" to-port="0" /> + <edge from-layer="140" from-port="0" to-layer="141" to-port="1" /> + <edge from-layer="141" from-port="2" to-layer="143" to-port="0" /> + <edge from-layer="142" from-port="0" to-layer="143" to-port="1" /> + <edge from-layer="143" from-port="2" to-layer="145" to-port="0" /> + <edge from-layer="144" from-port="1" to-layer="145" to-port="1" /> + <edge from-layer="145" from-port="2" to-layer="148" to-port="0" /> + <edge from-layer="146" from-port="0" to-layer="147" to-port="0" /> + <edge from-layer="147" from-port="1" to-layer="148" to-port="1" /> + <edge from-layer="148" from-port="2" to-layer="151" to-port="0" /> + <edge from-layer="149" from-port="0" to-layer="150" to-port="0" /> + <edge from-layer="150" from-port="1" to-layer="151" to-port="1" /> + <edge from-layer="151" from-port="2" to-layer="152" to-port="0" /> + <edge from-layer="152" from-port="1" to-layer="155" to-port="0" /> + <edge from-layer="153" from-port="0" to-layer="154" to-port="0" /> + <edge from-layer="154" from-port="1" to-layer="155" to-port="1" /> + <edge from-layer="155" from-port="2" to-layer="158" to-port="0" /> + <edge from-layer="156" from-port="0" to-layer="157" to-port="0" /> + <edge from-layer="157" from-port="1" to-layer="158" to-port="1" /> + <edge from-layer="158" from-port="2" to-layer="160" to-port="0" /> + <edge from-layer="158" from-port="2" to-layer="163" to-port="0" /> + <edge from-layer="159" from-port="0" to-layer="160" to-port="1" /> + <edge from-layer="160" from-port="2" to-layer="162" to-port="0" /> + <edge from-layer="161" from-port="0" to-layer="162" to-port="1" /> + <edge from-layer="162" from-port="2" to-layer="164" to-port="0" /> + <edge from-layer="163" from-port="1" to-layer="164" to-port="1" /> + <edge from-layer="164" from-port="2" to-layer="167" to-port="0" /> + <edge from-layer="165" from-port="0" to-layer="166" to-port="0" /> + <edge from-layer="166" from-port="1" to-layer="167" to-port="1" /> + <edge from-layer="167" from-port="2" to-layer="170" to-port="0" /> + <edge from-layer="168" from-port="0" to-layer="169" to-port="0" /> + <edge from-layer="169" from-port="1" to-layer="170" to-port="1" /> + <edge from-layer="170" from-port="2" to-layer="171" to-port="0" /> + <edge from-layer="171" from-port="1" to-layer="174" to-port="0" /> + <edge from-layer="172" from-port="0" to-layer="173" to-port="0" /> + <edge from-layer="173" from-port="1" to-layer="174" to-port="1" /> + <edge from-layer="174" from-port="2" to-layer="177" to-port="0" /> + <edge from-layer="175" from-port="0" to-layer="176" to-port="0" /> + <edge from-layer="176" from-port="1" to-layer="177" to-port="1" /> + <edge from-layer="177" from-port="2" to-layer="178" to-port="1" /> + <edge from-layer="178" from-port="2" to-layer="181" to-port="0" /> + <edge from-layer="179" from-port="0" to-layer="180" to-port="0" /> + <edge from-layer="180" from-port="1" to-layer="181" to-port="1" /> + <edge from-layer="181" from-port="2" to-layer="184" to-port="0" /> + <edge from-layer="182" from-port="0" to-layer="183" to-port="0" /> + <edge from-layer="183" from-port="1" to-layer="184" to-port="1" /> + <edge from-layer="184" from-port="2" to-layer="187" to-port="0" /> + <edge from-layer="184" from-port="2" to-layer="192" to-port="0" /> + <edge from-layer="184" from-port="2" to-layer="195" to-port="0" /> + <edge from-layer="185" from-port="0" to-layer="186" to-port="0" /> + <edge from-layer="186" from-port="1" to-layer="187" to-port="1" /> + <edge from-layer="187" from-port="2" to-layer="190" to-port="0" /> + <edge from-layer="188" from-port="0" to-layer="189" to-port="0" /> + <edge from-layer="189" from-port="1" to-layer="190" to-port="1" /> + <edge from-layer="190" from-port="2" to-layer="229" to-port="0" /> + <edge from-layer="191" from-port="0" to-layer="192" to-port="1" /> + <edge from-layer="192" from-port="2" to-layer="194" to-port="0" /> + <edge from-layer="193" from-port="0" to-layer="194" to-port="1" /> + <edge from-layer="194" from-port="2" to-layer="196" to-port="0" /> + <edge from-layer="195" from-port="1" to-layer="196" to-port="1" /> + <edge from-layer="196" from-port="2" to-layer="199" to-port="0" /> + <edge from-layer="197" from-port="0" to-layer="198" to-port="0" /> + <edge from-layer="198" from-port="1" to-layer="199" to-port="1" /> + <edge from-layer="199" from-port="2" to-layer="202" to-port="0" /> + <edge from-layer="200" from-port="0" to-layer="201" to-port="0" /> + <edge from-layer="201" from-port="1" to-layer="202" to-port="1" /> + <edge from-layer="202" from-port="2" to-layer="203" to-port="0" /> + <edge from-layer="203" from-port="1" to-layer="206" to-port="0" /> + <edge from-layer="204" from-port="0" to-layer="205" to-port="0" /> + <edge from-layer="205" from-port="1" to-layer="206" to-port="1" /> + <edge from-layer="206" from-port="2" to-layer="209" to-port="0" /> + <edge from-layer="207" from-port="0" to-layer="208" to-port="0" /> + <edge from-layer="208" from-port="1" to-layer="209" to-port="1" /> + <edge from-layer="209" from-port="2" to-layer="211" to-port="0" /> + <edge from-layer="209" from-port="2" to-layer="214" to-port="0" /> + <edge from-layer="210" from-port="0" to-layer="211" to-port="1" /> + <edge from-layer="211" from-port="2" to-layer="213" to-port="0" /> + <edge from-layer="212" from-port="0" to-layer="213" to-port="1" /> + <edge from-layer="213" from-port="2" to-layer="215" to-port="0" /> + <edge from-layer="214" from-port="1" to-layer="215" to-port="1" /> + <edge from-layer="215" from-port="2" to-layer="218" to-port="0" /> + <edge from-layer="216" from-port="0" to-layer="217" to-port="0" /> + <edge from-layer="217" from-port="1" to-layer="218" to-port="1" /> + <edge from-layer="218" from-port="2" to-layer="221" to-port="0" /> + <edge from-layer="219" from-port="0" to-layer="220" to-port="0" /> + <edge from-layer="220" from-port="1" to-layer="221" to-port="1" /> + <edge from-layer="221" from-port="2" to-layer="222" to-port="0" /> + <edge from-layer="222" from-port="1" to-layer="225" to-port="0" /> + <edge from-layer="223" from-port="0" to-layer="224" to-port="0" /> + <edge from-layer="224" from-port="1" to-layer="225" to-port="1" /> + <edge from-layer="225" from-port="2" to-layer="228" to-port="0" /> + <edge from-layer="226" from-port="0" to-layer="227" to-port="0" /> + <edge from-layer="227" from-port="1" to-layer="228" to-port="1" /> + <edge from-layer="228" from-port="2" to-layer="229" to-port="1" /> + <edge from-layer="229" from-port="2" to-layer="231" to-port="0" /> + <edge from-layer="229" from-port="2" to-layer="268" to-port="0" /> + <edge from-layer="229" from-port="2" to-layer="234" to-port="0" /> + <edge from-layer="230" from-port="0" to-layer="231" to-port="1" /> + <edge from-layer="231" from-port="2" to-layer="233" to-port="0" /> + <edge from-layer="232" from-port="0" to-layer="233" to-port="1" /> + <edge from-layer="233" from-port="2" to-layer="235" to-port="0" /> + <edge from-layer="234" from-port="1" to-layer="235" to-port="1" /> + <edge from-layer="235" from-port="2" to-layer="238" to-port="0" /> + <edge from-layer="236" from-port="0" to-layer="237" to-port="0" /> + <edge from-layer="237" from-port="1" to-layer="238" to-port="1" /> + <edge from-layer="238" from-port="2" to-layer="241" to-port="0" /> + <edge from-layer="239" from-port="0" to-layer="240" to-port="0" /> + <edge from-layer="240" from-port="1" to-layer="241" to-port="1" /> + <edge from-layer="241" from-port="2" to-layer="242" to-port="0" /> + <edge from-layer="242" from-port="1" to-layer="245" to-port="0" /> + <edge from-layer="243" from-port="0" to-layer="244" to-port="0" /> + <edge from-layer="244" from-port="1" to-layer="245" to-port="1" /> + <edge from-layer="245" from-port="2" to-layer="248" to-port="0" /> + <edge from-layer="246" from-port="0" to-layer="247" to-port="0" /> + <edge from-layer="247" from-port="1" to-layer="248" to-port="1" /> + <edge from-layer="248" from-port="2" to-layer="253" to-port="0" /> + <edge from-layer="248" from-port="2" to-layer="250" to-port="0" /> + <edge from-layer="249" from-port="0" to-layer="250" to-port="1" /> + <edge from-layer="250" from-port="2" to-layer="252" to-port="0" /> + <edge from-layer="251" from-port="0" to-layer="252" to-port="1" /> + <edge from-layer="252" from-port="2" to-layer="254" to-port="0" /> + <edge from-layer="253" from-port="1" to-layer="254" to-port="1" /> + <edge from-layer="254" from-port="2" to-layer="257" to-port="0" /> + <edge from-layer="255" from-port="0" to-layer="256" to-port="0" /> + <edge from-layer="256" from-port="1" to-layer="257" to-port="1" /> + <edge from-layer="257" from-port="2" to-layer="260" to-port="0" /> + <edge from-layer="258" from-port="0" to-layer="259" to-port="0" /> + <edge from-layer="259" from-port="1" to-layer="260" to-port="1" /> + <edge from-layer="260" from-port="2" to-layer="261" to-port="0" /> + <edge from-layer="261" from-port="1" to-layer="264" to-port="0" /> + <edge from-layer="262" from-port="0" to-layer="263" to-port="0" /> + <edge from-layer="263" from-port="1" to-layer="264" to-port="1" /> + <edge from-layer="264" from-port="2" to-layer="267" to-port="0" /> + <edge from-layer="265" from-port="0" to-layer="266" to-port="0" /> + <edge from-layer="266" from-port="1" to-layer="267" to-port="1" /> + <edge from-layer="267" from-port="2" to-layer="268" to-port="1" /> + <edge from-layer="268" from-port="2" to-layer="271" to-port="0" /> + <edge from-layer="269" from-port="0" to-layer="270" to-port="0" /> + <edge from-layer="270" from-port="1" to-layer="271" to-port="1" /> + <edge from-layer="271" from-port="2" to-layer="274" to-port="0" /> + <edge from-layer="272" from-port="0" to-layer="273" to-port="0" /> + <edge from-layer="273" from-port="1" to-layer="274" to-port="1" /> + <edge from-layer="274" from-port="2" to-layer="276" to-port="0" /> + <edge from-layer="274" from-port="2" to-layer="313" to-port="0" /> + <edge from-layer="274" from-port="2" to-layer="279" to-port="0" /> + <edge from-layer="275" from-port="0" to-layer="276" to-port="1" /> + <edge from-layer="276" from-port="2" to-layer="278" to-port="0" /> + <edge from-layer="277" from-port="0" to-layer="278" to-port="1" /> + <edge from-layer="278" from-port="2" to-layer="280" to-port="0" /> + <edge from-layer="279" from-port="1" to-layer="280" to-port="1" /> + <edge from-layer="280" from-port="2" to-layer="283" to-port="0" /> + <edge from-layer="281" from-port="0" to-layer="282" to-port="0" /> + <edge from-layer="282" from-port="1" to-layer="283" to-port="1" /> + <edge from-layer="283" from-port="2" to-layer="286" to-port="0" /> + <edge from-layer="284" from-port="0" to-layer="285" to-port="0" /> + <edge from-layer="285" from-port="1" to-layer="286" to-port="1" /> + <edge from-layer="286" from-port="2" to-layer="287" to-port="0" /> + <edge from-layer="287" from-port="1" to-layer="290" to-port="0" /> + <edge from-layer="288" from-port="0" to-layer="289" to-port="0" /> + <edge from-layer="289" from-port="1" to-layer="290" to-port="1" /> + <edge from-layer="290" from-port="2" to-layer="293" to-port="0" /> + <edge from-layer="291" from-port="0" to-layer="292" to-port="0" /> + <edge from-layer="292" from-port="1" to-layer="293" to-port="1" /> + <edge from-layer="293" from-port="2" to-layer="295" to-port="0" /> + <edge from-layer="293" from-port="2" to-layer="298" to-port="0" /> + <edge from-layer="294" from-port="0" to-layer="295" to-port="1" /> + <edge from-layer="295" from-port="2" to-layer="297" to-port="0" /> + <edge from-layer="296" from-port="0" to-layer="297" to-port="1" /> + <edge from-layer="297" from-port="2" to-layer="299" to-port="0" /> + <edge from-layer="298" from-port="1" to-layer="299" to-port="1" /> + <edge from-layer="299" from-port="2" to-layer="302" to-port="0" /> + <edge from-layer="300" from-port="0" to-layer="301" to-port="0" /> + <edge from-layer="301" from-port="1" to-layer="302" to-port="1" /> + <edge from-layer="302" from-port="2" to-layer="305" to-port="0" /> + <edge from-layer="303" from-port="0" to-layer="304" to-port="0" /> + <edge from-layer="304" from-port="1" to-layer="305" to-port="1" /> + <edge from-layer="305" from-port="2" to-layer="306" to-port="0" /> + <edge from-layer="306" from-port="1" to-layer="309" to-port="0" /> + <edge from-layer="307" from-port="0" to-layer="308" to-port="0" /> + <edge from-layer="308" from-port="1" to-layer="309" to-port="1" /> + <edge from-layer="309" from-port="2" to-layer="312" to-port="0" /> + <edge from-layer="310" from-port="0" to-layer="311" to-port="0" /> + <edge from-layer="311" from-port="1" to-layer="312" to-port="1" /> + <edge from-layer="312" from-port="2" to-layer="313" to-port="1" /> + <edge from-layer="313" from-port="2" to-layer="318" to-port="0" /> + <edge from-layer="313" from-port="2" to-layer="315" to-port="0" /> + <edge from-layer="313" from-port="2" to-layer="352" to-port="0" /> + <edge from-layer="314" from-port="0" to-layer="315" to-port="1" /> + <edge from-layer="315" from-port="2" to-layer="317" to-port="0" /> + <edge from-layer="316" from-port="0" to-layer="317" to-port="1" /> + <edge from-layer="317" from-port="2" to-layer="319" to-port="0" /> + <edge from-layer="318" from-port="1" to-layer="319" to-port="1" /> + <edge from-layer="319" from-port="2" to-layer="322" to-port="0" /> + <edge from-layer="320" from-port="0" to-layer="321" to-port="0" /> + <edge from-layer="321" from-port="1" to-layer="322" to-port="1" /> + <edge from-layer="322" from-port="2" to-layer="325" to-port="0" /> + <edge from-layer="323" from-port="0" to-layer="324" to-port="0" /> + <edge from-layer="324" from-port="1" to-layer="325" to-port="1" /> + <edge from-layer="325" from-port="2" to-layer="326" to-port="0" /> + <edge from-layer="326" from-port="1" to-layer="329" to-port="0" /> + <edge from-layer="327" from-port="0" to-layer="328" to-port="0" /> + <edge from-layer="328" from-port="1" to-layer="329" to-port="1" /> + <edge from-layer="329" from-port="2" to-layer="332" to-port="0" /> + <edge from-layer="330" from-port="0" to-layer="331" to-port="0" /> + <edge from-layer="331" from-port="1" to-layer="332" to-port="1" /> + <edge from-layer="332" from-port="2" to-layer="334" to-port="0" /> + <edge from-layer="332" from-port="2" to-layer="337" to-port="0" /> + <edge from-layer="333" from-port="0" to-layer="334" to-port="1" /> + <edge from-layer="334" from-port="2" to-layer="336" to-port="0" /> + <edge from-layer="335" from-port="0" to-layer="336" to-port="1" /> + <edge from-layer="336" from-port="2" to-layer="338" to-port="0" /> + <edge from-layer="337" from-port="1" to-layer="338" to-port="1" /> + <edge from-layer="338" from-port="2" to-layer="341" to-port="0" /> + <edge from-layer="339" from-port="0" to-layer="340" to-port="0" /> + <edge from-layer="340" from-port="1" to-layer="341" to-port="1" /> + <edge from-layer="341" from-port="2" to-layer="344" to-port="0" /> + <edge from-layer="342" from-port="0" to-layer="343" to-port="0" /> + <edge from-layer="343" from-port="1" to-layer="344" to-port="1" /> + <edge from-layer="344" from-port="2" to-layer="345" to-port="0" /> + <edge from-layer="345" from-port="1" to-layer="348" to-port="0" /> + <edge from-layer="346" from-port="0" to-layer="347" to-port="0" /> + <edge from-layer="347" from-port="1" to-layer="348" to-port="1" /> + <edge from-layer="348" from-port="2" to-layer="351" to-port="0" /> + <edge from-layer="349" from-port="0" to-layer="350" to-port="0" /> + <edge from-layer="350" from-port="1" to-layer="351" to-port="1" /> + <edge from-layer="351" from-port="2" to-layer="352" to-port="1" /> + <edge from-layer="352" from-port="2" to-layer="354" to-port="0" /> + <edge from-layer="352" from-port="2" to-layer="357" to-port="0" /> + <edge from-layer="352" from-port="2" to-layer="391" to-port="0" /> + <edge from-layer="353" from-port="0" to-layer="354" to-port="1" /> + <edge from-layer="354" from-port="2" to-layer="356" to-port="0" /> + <edge from-layer="355" from-port="0" to-layer="356" to-port="1" /> + <edge from-layer="356" from-port="2" to-layer="358" to-port="0" /> + <edge from-layer="357" from-port="1" to-layer="358" to-port="1" /> + <edge from-layer="358" from-port="2" to-layer="361" to-port="0" /> + <edge from-layer="359" from-port="0" to-layer="360" to-port="0" /> + <edge from-layer="360" from-port="1" to-layer="361" to-port="1" /> + <edge from-layer="361" from-port="2" to-layer="364" to-port="0" /> + <edge from-layer="362" from-port="0" to-layer="363" to-port="0" /> + <edge from-layer="363" from-port="1" to-layer="364" to-port="1" /> + <edge from-layer="364" from-port="2" to-layer="365" to-port="0" /> + <edge from-layer="365" from-port="1" to-layer="368" to-port="0" /> + <edge from-layer="366" from-port="0" to-layer="367" to-port="0" /> + <edge from-layer="367" from-port="1" to-layer="368" to-port="1" /> + <edge from-layer="368" from-port="2" to-layer="371" to-port="0" /> + <edge from-layer="369" from-port="0" to-layer="370" to-port="0" /> + <edge from-layer="370" from-port="1" to-layer="371" to-port="1" /> + <edge from-layer="371" from-port="2" to-layer="373" to-port="0" /> + <edge from-layer="371" from-port="2" to-layer="376" to-port="0" /> + <edge from-layer="372" from-port="0" to-layer="373" to-port="1" /> + <edge from-layer="373" from-port="2" to-layer="375" to-port="0" /> + <edge from-layer="374" from-port="0" to-layer="375" to-port="1" /> + <edge from-layer="375" from-port="2" to-layer="377" to-port="0" /> + <edge from-layer="376" from-port="1" to-layer="377" to-port="1" /> + <edge from-layer="377" from-port="2" to-layer="380" to-port="0" /> + <edge from-layer="378" from-port="0" to-layer="379" to-port="0" /> + <edge from-layer="379" from-port="1" to-layer="380" to-port="1" /> + <edge from-layer="380" from-port="2" to-layer="383" to-port="0" /> + <edge from-layer="381" from-port="0" to-layer="382" to-port="0" /> + <edge from-layer="382" from-port="1" to-layer="383" to-port="1" /> + <edge from-layer="383" from-port="2" to-layer="384" to-port="0" /> + <edge from-layer="384" from-port="1" to-layer="387" to-port="0" /> + <edge from-layer="385" from-port="0" to-layer="386" to-port="0" /> + <edge from-layer="386" from-port="1" to-layer="387" to-port="1" /> + <edge from-layer="387" from-port="2" to-layer="390" to-port="0" /> + <edge from-layer="388" from-port="0" to-layer="389" to-port="0" /> + <edge from-layer="389" from-port="1" to-layer="390" to-port="1" /> + <edge from-layer="390" from-port="2" to-layer="391" to-port="1" /> + <edge from-layer="391" from-port="2" to-layer="393" to-port="0" /> + <edge from-layer="391" from-port="2" to-layer="396" to-port="0" /> + <edge from-layer="391" from-port="2" to-layer="541" to-port="1" /> + <edge from-layer="392" from-port="0" to-layer="393" to-port="1" /> + <edge from-layer="393" from-port="2" to-layer="395" to-port="0" /> + <edge from-layer="394" from-port="0" to-layer="395" to-port="1" /> + <edge from-layer="395" from-port="2" to-layer="397" to-port="0" /> + <edge from-layer="396" from-port="1" to-layer="406" to-port="0" /> + <edge from-layer="396" from-port="1" to-layer="540" to-port="1" /> + <edge from-layer="396" from-port="1" to-layer="409" to-port="0" /> + <edge from-layer="396" from-port="1" to-layer="412" to-port="0" /> + <edge from-layer="396" from-port="1" to-layer="397" to-port="1" /> + <edge from-layer="397" from-port="2" to-layer="400" to-port="0" /> + <edge from-layer="398" from-port="0" to-layer="399" to-port="0" /> + <edge from-layer="399" from-port="1" to-layer="400" to-port="1" /> + <edge from-layer="400" from-port="2" to-layer="403" to-port="0" /> + <edge from-layer="401" from-port="0" to-layer="402" to-port="0" /> + <edge from-layer="402" from-port="1" to-layer="403" to-port="1" /> + <edge from-layer="403" from-port="2" to-layer="417" to-port="0" /> + <edge from-layer="404" from-port="0" to-layer="406" to-port="1" /> + <edge from-layer="405" from-port="0" to-layer="406" to-port="2" /> + <edge from-layer="406" from-port="3" to-layer="416" to-port="0" /> + <edge from-layer="407" from-port="0" to-layer="409" to-port="1" /> + <edge from-layer="408" from-port="0" to-layer="409" to-port="2" /> + <edge from-layer="409" from-port="3" to-layer="413" to-port="0" /> + <edge from-layer="410" from-port="0" to-layer="412" to-port="1" /> + <edge from-layer="411" from-port="0" to-layer="412" to-port="2" /> + <edge from-layer="412" from-port="3" to-layer="413" to-port="1" /> + <edge from-layer="413" from-port="2" to-layer="415" to-port="0" /> + <edge from-layer="414" from-port="0" to-layer="415" to-port="1" /> + <edge from-layer="415" from-port="2" to-layer="416" to-port="1" /> + <edge from-layer="416" from-port="2" to-layer="417" to-port="1" /> + <edge from-layer="417" from-port="2" to-layer="420" to-port="0" /> + <edge from-layer="417" from-port="2" to-layer="445" to-port="0" /> + <edge from-layer="417" from-port="2" to-layer="491" to-port="0" /> + <edge from-layer="418" from-port="0" to-layer="419" to-port="0" /> + <edge from-layer="419" from-port="1" to-layer="420" to-port="1" /> + <edge from-layer="420" from-port="2" to-layer="421" to-port="1" /> + <edge from-layer="421" from-port="2" to-layer="424" to-port="0" /> + <edge from-layer="421" from-port="2" to-layer="431" to-port="0" /> + <edge from-layer="422" from-port="0" to-layer="430" to-port="0" /> + <edge from-layer="423" from-port="0" to-layer="430" to-port="1" /> + <edge from-layer="424" from-port="1" to-layer="427" to-port="0" /> + <edge from-layer="424" from-port="1" to-layer="436" to-port="0" /> + <edge from-layer="425" from-port="0" to-layer="427" to-port="1" /> + <edge from-layer="426" from-port="0" to-layer="427" to-port="2" /> + <edge from-layer="427" from-port="3" to-layer="429" to-port="0" /> + <edge from-layer="427" from-port="3" to-layer="438" to-port="0" /> + <edge from-layer="428" from-port="0" to-layer="429" to-port="1" /> + <edge from-layer="429" from-port="2" to-layer="430" to-port="2" /> + <edge from-layer="430" from-port="3" to-layer="431" to-port="1" /> + <edge from-layer="431" from-port="2" to-layer="433" to-port="0" /> + <edge from-layer="432" from-port="0" to-layer="433" to-port="1" /> + <edge from-layer="433" from-port="2" to-layer="440" to-port="0" /> + <edge from-layer="434" from-port="0" to-layer="436" to-port="1" /> + <edge from-layer="435" from-port="0" to-layer="436" to-port="2" /> + <edge from-layer="436" from-port="3" to-layer="439" to-port="0" /> + <edge from-layer="437" from-port="0" to-layer="438" to-port="1" /> + <edge from-layer="438" from-port="2" to-layer="439" to-port="1" /> + <edge from-layer="439" from-port="2" to-layer="440" to-port="1" /> + <edge from-layer="440" from-port="2" to-layer="472" to-port="0" /> + <edge from-layer="440" from-port="2" to-layer="469" to-port="0" /> + <edge from-layer="441" from-port="0" to-layer="442" to-port="0" /> + <edge from-layer="442" from-port="1" to-layer="446" to-port="0" /> + <edge from-layer="443" from-port="0" to-layer="444" to-port="0" /> + <edge from-layer="444" from-port="1" to-layer="445" to-port="1" /> + <edge from-layer="445" from-port="2" to-layer="446" to-port="1" /> + <edge from-layer="446" from-port="2" to-layer="456" to-port="0" /> + <edge from-layer="446" from-port="2" to-layer="449" to-port="0" /> + <edge from-layer="447" from-port="0" to-layer="455" to-port="0" /> + <edge from-layer="448" from-port="0" to-layer="455" to-port="1" /> + <edge from-layer="449" from-port="1" to-layer="461" to-port="0" /> + <edge from-layer="449" from-port="1" to-layer="452" to-port="0" /> + <edge from-layer="450" from-port="0" to-layer="452" to-port="1" /> + <edge from-layer="451" from-port="0" to-layer="452" to-port="2" /> + <edge from-layer="452" from-port="3" to-layer="454" to-port="0" /> + <edge from-layer="452" from-port="3" to-layer="463" to-port="0" /> + <edge from-layer="453" from-port="0" to-layer="454" to-port="1" /> + <edge from-layer="454" from-port="2" to-layer="455" to-port="2" /> + <edge from-layer="455" from-port="3" to-layer="456" to-port="1" /> + <edge from-layer="456" from-port="2" to-layer="458" to-port="0" /> + <edge from-layer="457" from-port="0" to-layer="458" to-port="1" /> + <edge from-layer="458" from-port="2" to-layer="465" to-port="0" /> + <edge from-layer="459" from-port="0" to-layer="461" to-port="1" /> + <edge from-layer="460" from-port="0" to-layer="461" to-port="2" /> + <edge from-layer="461" from-port="3" to-layer="464" to-port="0" /> + <edge from-layer="462" from-port="0" to-layer="463" to-port="1" /> + <edge from-layer="463" from-port="2" to-layer="464" to-port="1" /> + <edge from-layer="464" from-port="2" to-layer="465" to-port="1" /> + <edge from-layer="465" from-port="2" to-layer="476" to-port="0" /> + <edge from-layer="465" from-port="2" to-layer="468" to-port="0" /> + <edge from-layer="466" from-port="0" to-layer="467" to-port="0" /> + <edge from-layer="467" from-port="1" to-layer="468" to-port="1" /> + <edge from-layer="468" from-port="2" to-layer="469" to-port="1" /> + <edge from-layer="469" from-port="2" to-layer="485" to-port="0" /> + <edge from-layer="470" from-port="0" to-layer="471" to-port="0" /> + <edge from-layer="471" from-port="1" to-layer="481" to-port="0" /> + <edge from-layer="472" from-port="1" to-layer="475" to-port="0" /> + <edge from-layer="473" from-port="0" to-layer="475" to-port="1" /> + <edge from-layer="474" from-port="0" to-layer="475" to-port="2" /> + <edge from-layer="475" from-port="3" to-layer="480" to-port="0" /> + <edge from-layer="476" from-port="1" to-layer="479" to-port="0" /> + <edge from-layer="477" from-port="0" to-layer="479" to-port="1" /> + <edge from-layer="478" from-port="0" to-layer="479" to-port="2" /> + <edge from-layer="479" from-port="3" to-layer="480" to-port="1" /> + <edge from-layer="480" from-port="2" to-layer="481" to-port="1" /> + <edge from-layer="481" from-port="2" to-layer="484" to-port="0" /> + <edge from-layer="482" from-port="0" to-layer="483" to-port="0" /> + <edge from-layer="483" from-port="1" to-layer="484" to-port="1" /> + <edge from-layer="484" from-port="2" to-layer="485" to-port="1" /> + <edge from-layer="485" from-port="2" to-layer="486" to-port="0" /> + <edge from-layer="486" from-port="1" to-layer="512" to-port="0" /> + <edge from-layer="487" from-port="0" to-layer="488" to-port="0" /> + <edge from-layer="488" from-port="1" to-layer="492" to-port="0" /> + <edge from-layer="489" from-port="0" to-layer="490" to-port="0" /> + <edge from-layer="490" from-port="1" to-layer="491" to-port="1" /> + <edge from-layer="491" from-port="2" to-layer="492" to-port="1" /> + <edge from-layer="492" from-port="2" to-layer="495" to-port="0" /> + <edge from-layer="492" from-port="2" to-layer="502" to-port="0" /> + <edge from-layer="493" from-port="0" to-layer="501" to-port="0" /> + <edge from-layer="494" from-port="0" to-layer="501" to-port="1" /> + <edge from-layer="495" from-port="1" to-layer="498" to-port="0" /> + <edge from-layer="495" from-port="1" to-layer="507" to-port="0" /> + <edge from-layer="496" from-port="0" to-layer="498" to-port="1" /> + <edge from-layer="497" from-port="0" to-layer="498" to-port="2" /> + <edge from-layer="498" from-port="3" to-layer="500" to-port="0" /> + <edge from-layer="498" from-port="3" to-layer="509" to-port="0" /> + <edge from-layer="499" from-port="0" to-layer="500" to-port="1" /> + <edge from-layer="500" from-port="2" to-layer="501" to-port="2" /> + <edge from-layer="501" from-port="3" to-layer="502" to-port="1" /> + <edge from-layer="502" from-port="2" to-layer="504" to-port="0" /> + <edge from-layer="503" from-port="0" to-layer="504" to-port="1" /> + <edge from-layer="504" from-port="2" to-layer="511" to-port="0" /> + <edge from-layer="505" from-port="0" to-layer="507" to-port="1" /> + <edge from-layer="506" from-port="0" to-layer="507" to-port="2" /> + <edge from-layer="507" from-port="3" to-layer="510" to-port="0" /> + <edge from-layer="508" from-port="0" to-layer="509" to-port="1" /> + <edge from-layer="509" from-port="2" to-layer="510" to-port="1" /> + <edge from-layer="510" from-port="2" to-layer="511" to-port="1" /> + <edge from-layer="511" from-port="2" to-layer="512" to-port="1" /> + <edge from-layer="512" from-port="2" to-layer="513" to-port="0" /> + <edge from-layer="512" from-port="2" to-layer="524" to-port="0" /> + <edge from-layer="513" from-port="1" to-layer="516" to-port="0" /> + <edge from-layer="513" from-port="1" to-layer="531" to-port="0" /> + <edge from-layer="513" from-port="1" to-layer="522" to-port="0" /> + <edge from-layer="514" from-port="0" to-layer="516" to-port="1" /> + <edge from-layer="515" from-port="0" to-layer="516" to-port="2" /> + <edge from-layer="516" from-port="3" to-layer="518" to-port="0" /> + <edge from-layer="516" from-port="3" to-layer="528" to-port="0" /> + <edge from-layer="517" from-port="0" to-layer="518" to-port="1" /> + <edge from-layer="518" from-port="2" to-layer="523" to-port="0" /> + <edge from-layer="519" from-port="0" to-layer="523" to-port="1" /> + <edge from-layer="520" from-port="0" to-layer="522" to-port="1" /> + <edge from-layer="521" from-port="0" to-layer="522" to-port="2" /> + <edge from-layer="522" from-port="3" to-layer="523" to-port="2" /> + <edge from-layer="523" from-port="3" to-layer="524" to-port="1" /> + <edge from-layer="524" from-port="2" to-layer="526" to-port="0" /> + <edge from-layer="525" from-port="0" to-layer="526" to-port="1" /> + <edge from-layer="526" from-port="2" to-layer="533" to-port="0" /> + <edge from-layer="527" from-port="0" to-layer="528" to-port="1" /> + <edge from-layer="528" from-port="2" to-layer="532" to-port="0" /> + <edge from-layer="529" from-port="0" to-layer="531" to-port="1" /> + <edge from-layer="530" from-port="0" to-layer="531" to-port="2" /> + <edge from-layer="531" from-port="3" to-layer="532" to-port="1" /> + <edge from-layer="532" from-port="2" to-layer="533" to-port="1" /> + <edge from-layer="533" from-port="2" to-layer="536" to-port="0" /> + <edge from-layer="534" from-port="0" to-layer="535" to-port="0" /> + <edge from-layer="535" from-port="1" to-layer="536" to-port="1" /> + <edge from-layer="536" from-port="2" to-layer="537" to-port="1" /> + <edge from-layer="537" from-port="2" to-layer="539" to-port="0" /> + <edge from-layer="538" from-port="0" to-layer="539" to-port="1" /> + <edge from-layer="539" from-port="2" to-layer="540" to-port="0" /> + <edge from-layer="540" from-port="2" to-layer="541" to-port="0" /> + <edge from-layer="541" from-port="2" to-layer="543" to-port="0" /> + <edge from-layer="541" from-port="2" to-layer="546" to-port="0" /> + <edge from-layer="541" from-port="2" to-layer="580" to-port="0" /> + <edge from-layer="542" from-port="0" to-layer="543" to-port="1" /> + <edge from-layer="543" from-port="2" to-layer="545" to-port="0" /> + <edge from-layer="544" from-port="0" to-layer="545" to-port="1" /> + <edge from-layer="545" from-port="2" to-layer="547" to-port="0" /> + <edge from-layer="546" from-port="1" to-layer="547" to-port="1" /> + <edge from-layer="547" from-port="2" to-layer="550" to-port="0" /> + <edge from-layer="548" from-port="0" to-layer="549" to-port="0" /> + <edge from-layer="549" from-port="1" to-layer="550" to-port="1" /> + <edge from-layer="550" from-port="2" to-layer="553" to-port="0" /> + <edge from-layer="551" from-port="0" to-layer="552" to-port="0" /> + <edge from-layer="552" from-port="1" to-layer="553" to-port="1" /> + <edge from-layer="553" from-port="2" to-layer="554" to-port="0" /> + <edge from-layer="554" from-port="1" to-layer="557" to-port="0" /> + <edge from-layer="555" from-port="0" to-layer="556" to-port="0" /> + <edge from-layer="556" from-port="1" to-layer="557" to-port="1" /> + <edge from-layer="557" from-port="2" to-layer="560" to-port="0" /> + <edge from-layer="558" from-port="0" to-layer="559" to-port="0" /> + <edge from-layer="559" from-port="1" to-layer="560" to-port="1" /> + <edge from-layer="560" from-port="2" to-layer="562" to-port="0" /> + <edge from-layer="560" from-port="2" to-layer="565" to-port="0" /> + <edge from-layer="561" from-port="0" to-layer="562" to-port="1" /> + <edge from-layer="562" from-port="2" to-layer="564" to-port="0" /> + <edge from-layer="563" from-port="0" to-layer="564" to-port="1" /> + <edge from-layer="564" from-port="2" to-layer="566" to-port="0" /> + <edge from-layer="565" from-port="1" to-layer="566" to-port="1" /> + <edge from-layer="566" from-port="2" to-layer="569" to-port="0" /> + <edge from-layer="567" from-port="0" to-layer="568" to-port="0" /> + <edge from-layer="568" from-port="1" to-layer="569" to-port="1" /> + <edge from-layer="569" from-port="2" to-layer="572" to-port="0" /> + <edge from-layer="570" from-port="0" to-layer="571" to-port="0" /> + <edge from-layer="571" from-port="1" to-layer="572" to-port="1" /> + <edge from-layer="572" from-port="2" to-layer="573" to-port="0" /> + <edge from-layer="573" from-port="1" to-layer="576" to-port="0" /> + <edge from-layer="574" from-port="0" to-layer="575" to-port="0" /> + <edge from-layer="575" from-port="1" to-layer="576" to-port="1" /> + <edge from-layer="576" from-port="2" to-layer="579" to-port="0" /> + <edge from-layer="577" from-port="0" to-layer="578" to-port="0" /> + <edge from-layer="578" from-port="1" to-layer="579" to-port="1" /> + <edge from-layer="579" from-port="2" to-layer="580" to-port="1" /> + <edge from-layer="580" from-port="2" to-layer="582" to-port="0" /> + <edge from-layer="580" from-port="2" to-layer="585" to-port="0" /> + <edge from-layer="581" from-port="0" to-layer="582" to-port="1" /> + <edge from-layer="582" from-port="2" to-layer="584" to-port="0" /> + <edge from-layer="583" from-port="0" to-layer="584" to-port="1" /> + <edge from-layer="584" from-port="2" to-layer="586" to-port="0" /> + <edge from-layer="585" from-port="1" to-layer="586" to-port="1" /> + <edge from-layer="586" from-port="2" to-layer="589" to-port="0" /> + <edge from-layer="587" from-port="0" to-layer="588" to-port="0" /> + <edge from-layer="588" from-port="1" to-layer="589" to-port="1" /> + <edge from-layer="589" from-port="2" to-layer="592" to-port="0" /> + <edge from-layer="590" from-port="0" to-layer="591" to-port="0" /> + <edge from-layer="591" from-port="1" to-layer="592" to-port="1" /> + <edge from-layer="592" from-port="2" to-layer="593" to-port="0" /> + <edge from-layer="593" from-port="1" to-layer="596" to-port="0" /> + <edge from-layer="594" from-port="0" to-layer="595" to-port="0" /> + <edge from-layer="595" from-port="1" to-layer="596" to-port="1" /> + <edge from-layer="596" from-port="2" to-layer="599" to-port="0" /> + <edge from-layer="597" from-port="0" to-layer="598" to-port="0" /> + <edge from-layer="598" from-port="1" to-layer="599" to-port="1" /> + <edge from-layer="599" from-port="2" to-layer="602" to-port="0" /> + <edge from-layer="600" from-port="0" to-layer="601" to-port="0" /> + <edge from-layer="601" from-port="1" to-layer="602" to-port="1" /> + <edge from-layer="602" from-port="2" to-layer="605" to-port="0" /> + <edge from-layer="603" from-port="0" to-layer="604" to-port="0" /> + <edge from-layer="604" from-port="1" to-layer="605" to-port="1" /> + <edge from-layer="605" from-port="2" to-layer="606" to-port="0" /> </edges> - <meta_data> - <MO_version value="2022.1.0-7019-cdb9bec7210-releases/2022/1"/> - <Runtime_version value="2022.1.0-7019-cdb9bec7210-releases/2022/1"/> - <legacy_path value="False"/> - <cli_parameters> - <caffe_parser_path value="DIR"/> - <compress_fp16 value="False"/> - <data_type value="float"/> - <disable_nhwc_to_nchw value="False"/> - <disable_omitting_optional value="False"/> - <disable_resnet_optimization value="False"/> - <disable_weights_compression value="False"/> - <enable_concat_optimization value="False"/> - <enable_flattening_nested_params value="False"/> - <enable_ssd_gluoncv value="False"/> - <extensions value="DIR"/> - <framework value="onnx"/> - <freeze_placeholder_with_value value="{}"/> - <input_model value="DIR/vae_encoder.onnx"/> - <input_model_is_text value="False"/> - <k value="DIR/CustomLayersMapping.xml"/> - <layout value="()"/> - <layout_values value="{}"/> - <legacy_mxnet_model value="False"/> - <log_level value="ERROR"/> - <mean_scale_values value="{}"/> - <mean_values value="()"/> - <model_name value="vae_encoder"/> - <output_dir value="DIR"/> - <placeholder_data_types value="{}"/> - <progress value="False"/> - <remove_memory value="False"/> - <remove_output_softmax value="False"/> - <reverse_input_channels value="False"/> - <save_params_from_nd value="False"/> - <scale_values value="()"/> - <silent value="False"/> - <source_layout value="()"/> - <static_shape value="False"/> - <stream_output value="False"/> - <target_layout value="()"/> - <transform value=""/> - <use_legacy_frontend value="False"/> - <use_new_frontend value="False"/> - <unset unset_cli_parameters="batch, counts, disable_fusing, finegrain_fusing, input, input_checkpoint, input_meta_graph, input_proto, input_shape, input_symbol, mean_file, mean_file_offsets, nd_prefix_name, output, placeholder_shapes, pretrained_model_name, saved_model_dir, saved_model_tags, scale, tensorboard_logdir, tensorflow_custom_layer_libraries, tensorflow_custom_operations_config_update, tensorflow_object_detection_api_pipeline_config, tensorflow_use_custom_operations_config, transformations_config"/> - </cli_parameters> - </meta_data> + <rt_info> + <MO_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" /> + <Runtime_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" /> + <conversion_parameters> + <compress_to_fp16 value="True" /> + <input_model value="DIR\vae_encoder.onnx" /> + </conversion_parameters> + <legacy_frontend value="False" /> + </rt_info> </net>