banghua commited on
Commit
6f8f5dc
·
0 Parent(s):

Duplicate from banghua/n_rm

Browse files
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
global_step1400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:964dfeff5337bbeaf204f228250b1f0c0a9a34b53cac198d9eb922b694fee53e
3
+ size 10107635127
global_step1400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02703e0fb94a05ed844c3f5fb0fdd4dff63a33d42a5899717cf27360074ba597
3
+ size 10107635511
global_step1400/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a1d87dc115f836f3b418f2c0629cccdf8faa4821b7f0d75f550266236414339
3
+ size 10107635511
global_step1400/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5ca02c175d6db6d53531a8384558640f08b9feef50a5fe267dd43caa13b084c
3
+ size 10107635703
global_step1400/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f530314f97b676a3a2074902239ae721333eadf3909a5ab9b552590935863623
3
+ size 10107635575
global_step1400/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7803dbd98dfd3cb2e46e9ade255baf1151c332d79849d8c26b4f36f3ce9aac27
3
+ size 10107635639
global_step1400/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1acdf3066c608dd50252cc6c12a6b17d13033e0a62f5bad1192e679b6f73f6b
3
+ size 10107635575
global_step1400/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19680cdfcf02f32d10f4c744adff0dedd1405b7e9672d677cacb85039200ab64
3
+ size 10107635255
global_step1400/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b2d03e9f8d039c27856dee853487a996b9033e94ae8a820571657e9b9f4d74c
3
+ size 13477033283
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1400
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e822738b1730aee4bcd4695d25836907dd3b98dff1ac112260d89c2085c0a743
3
+ size 26691724373
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4077b34b03f79b052bd53a09b269b2df2b9b4edbba886d14e19bc0ff6508ab00
3
+ size 21687
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6fc2e3e4688f0af35b81181a28d78078f10a4e63237915ef2e25612318a5b3
3
+ size 21687
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48f9dd20406c2f7ee61d289c703091bfb05aca0d3d4bc461fec41b66d43bfa5
3
+ size 21687
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a513659dd182753b05daade475bbf0a51cfafbb0119721a6e1b8d60c45dacdb1
3
+ size 21687
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:130f08688b3d017d9a1c2ac8ef50fa6d9637aa718b7ae19c54fd23cfd35490c2
3
+ size 21687
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22929ee481c4bff4217495b52b918cafcda752ff40c793ba1081d43d57f7fa58
3
+ size 21687
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98553316d85e76503cf36b5f7bf067dd5c1d3db5fda7842498a035a54c847a32
3
+ size 21687
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6d3a685adbcf6a9447697719aec403e5cd0262aa6decadfb656356ede6df4e8
3
+ size 21687
trainer_state.json ADDED
@@ -0,0 +1,985 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.2997502386569977,
3
+ "best_model_checkpoint": "rm_ckptreward-p100-w0.3-s0/checkpoint-1400",
4
+ "epoch": 0.8934269304403318,
5
+ "eval_steps": 200,
6
+ "global_step": 1400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.9999999999999996e-06,
14
+ "loss": 0.3897,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 6.505149978319905e-06,
20
+ "loss": 0.3441,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 7.385606273598311e-06,
26
+ "loss": 0.326,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 8.010299956639811e-06,
32
+ "loss": 0.3131,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 8.494850021680093e-06,
38
+ "loss": 0.3187,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 8.890756251918216e-06,
44
+ "loss": 0.3105,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 9.225490200071284e-06,
50
+ "loss": 0.3137,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 9.515449934959717e-06,
56
+ "loss": 0.3115,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 9.771212547196623e-06,
62
+ "loss": 0.309,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 9.999999999999999e-06,
68
+ "loss": 0.3073,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1e-05,
74
+ "loss": 0.3152,
75
+ "step": 110
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1e-05,
80
+ "loss": 0.3064,
81
+ "step": 120
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1e-05,
86
+ "loss": 0.3094,
87
+ "step": 130
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1e-05,
92
+ "loss": 0.3009,
93
+ "step": 140
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1e-05,
98
+ "loss": 0.3041,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1e-05,
104
+ "loss": 0.305,
105
+ "step": 160
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1e-05,
110
+ "loss": 0.304,
111
+ "step": 170
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1e-05,
116
+ "loss": 0.2999,
117
+ "step": 180
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1e-05,
122
+ "loss": 0.3095,
123
+ "step": 190
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1e-05,
128
+ "loss": 0.3042,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "eval_val_accuracy": 896.5238095238095,
134
+ "eval_val_loss": 0.30677446722984314,
135
+ "eval_val_runtime": 2250.4996,
136
+ "eval_val_samples_per_second": 4.443,
137
+ "eval_val_steps_per_second": 0.555,
138
+ "step": 200
139
+ },
140
+ {
141
+ "epoch": 0.13,
142
+ "eval_test_accuracy": 898.6904761904761,
143
+ "eval_test_loss": 0.30444496870040894,
144
+ "eval_test_runtime": 2251.863,
145
+ "eval_test_samples_per_second": 4.441,
146
+ "eval_test_steps_per_second": 0.555,
147
+ "step": 200
148
+ },
149
+ {
150
+ "epoch": 0.13,
151
+ "learning_rate": 1e-05,
152
+ "loss": 0.3018,
153
+ "step": 210
154
+ },
155
+ {
156
+ "epoch": 0.14,
157
+ "learning_rate": 1e-05,
158
+ "loss": 0.3078,
159
+ "step": 220
160
+ },
161
+ {
162
+ "epoch": 0.15,
163
+ "learning_rate": 1e-05,
164
+ "loss": 0.3028,
165
+ "step": 230
166
+ },
167
+ {
168
+ "epoch": 0.15,
169
+ "learning_rate": 1e-05,
170
+ "loss": 0.3043,
171
+ "step": 240
172
+ },
173
+ {
174
+ "epoch": 0.16,
175
+ "learning_rate": 1e-05,
176
+ "loss": 0.3081,
177
+ "step": 250
178
+ },
179
+ {
180
+ "epoch": 0.17,
181
+ "learning_rate": 1e-05,
182
+ "loss": 0.3056,
183
+ "step": 260
184
+ },
185
+ {
186
+ "epoch": 0.17,
187
+ "learning_rate": 1e-05,
188
+ "loss": 0.3083,
189
+ "step": 270
190
+ },
191
+ {
192
+ "epoch": 0.18,
193
+ "learning_rate": 1e-05,
194
+ "loss": 0.3,
195
+ "step": 280
196
+ },
197
+ {
198
+ "epoch": 0.19,
199
+ "learning_rate": 1e-05,
200
+ "loss": 0.3036,
201
+ "step": 290
202
+ },
203
+ {
204
+ "epoch": 0.19,
205
+ "learning_rate": 1e-05,
206
+ "loss": 0.307,
207
+ "step": 300
208
+ },
209
+ {
210
+ "epoch": 0.2,
211
+ "learning_rate": 1e-05,
212
+ "loss": 0.3029,
213
+ "step": 310
214
+ },
215
+ {
216
+ "epoch": 0.2,
217
+ "learning_rate": 1e-05,
218
+ "loss": 0.3035,
219
+ "step": 320
220
+ },
221
+ {
222
+ "epoch": 0.21,
223
+ "learning_rate": 1e-05,
224
+ "loss": 0.3052,
225
+ "step": 330
226
+ },
227
+ {
228
+ "epoch": 0.22,
229
+ "learning_rate": 1e-05,
230
+ "loss": 0.3034,
231
+ "step": 340
232
+ },
233
+ {
234
+ "epoch": 0.22,
235
+ "learning_rate": 1e-05,
236
+ "loss": 0.3012,
237
+ "step": 350
238
+ },
239
+ {
240
+ "epoch": 0.23,
241
+ "learning_rate": 1e-05,
242
+ "loss": 0.3023,
243
+ "step": 360
244
+ },
245
+ {
246
+ "epoch": 0.24,
247
+ "learning_rate": 1e-05,
248
+ "loss": 0.305,
249
+ "step": 370
250
+ },
251
+ {
252
+ "epoch": 0.24,
253
+ "learning_rate": 1e-05,
254
+ "loss": 0.3075,
255
+ "step": 380
256
+ },
257
+ {
258
+ "epoch": 0.25,
259
+ "learning_rate": 1e-05,
260
+ "loss": 0.3043,
261
+ "step": 390
262
+ },
263
+ {
264
+ "epoch": 0.26,
265
+ "learning_rate": 1e-05,
266
+ "loss": 0.302,
267
+ "step": 400
268
+ },
269
+ {
270
+ "epoch": 0.26,
271
+ "eval_val_accuracy": 901.1428571428571,
272
+ "eval_val_loss": 0.3049960434436798,
273
+ "eval_val_runtime": 2251.3044,
274
+ "eval_val_samples_per_second": 4.442,
275
+ "eval_val_steps_per_second": 0.555,
276
+ "step": 400
277
+ },
278
+ {
279
+ "epoch": 0.26,
280
+ "eval_test_accuracy": 902.547619047619,
281
+ "eval_test_loss": 0.3042500615119934,
282
+ "eval_test_runtime": 2251.0717,
283
+ "eval_test_samples_per_second": 4.442,
284
+ "eval_test_steps_per_second": 0.555,
285
+ "step": 400
286
+ },
287
+ {
288
+ "epoch": 0.26,
289
+ "learning_rate": 1e-05,
290
+ "loss": 0.2984,
291
+ "step": 410
292
+ },
293
+ {
294
+ "epoch": 0.27,
295
+ "learning_rate": 1e-05,
296
+ "loss": 0.3001,
297
+ "step": 420
298
+ },
299
+ {
300
+ "epoch": 0.27,
301
+ "learning_rate": 1e-05,
302
+ "loss": 0.3034,
303
+ "step": 430
304
+ },
305
+ {
306
+ "epoch": 0.28,
307
+ "learning_rate": 1e-05,
308
+ "loss": 0.3005,
309
+ "step": 440
310
+ },
311
+ {
312
+ "epoch": 0.29,
313
+ "learning_rate": 1e-05,
314
+ "loss": 0.308,
315
+ "step": 450
316
+ },
317
+ {
318
+ "epoch": 0.29,
319
+ "learning_rate": 1e-05,
320
+ "loss": 0.3011,
321
+ "step": 460
322
+ },
323
+ {
324
+ "epoch": 0.3,
325
+ "learning_rate": 1e-05,
326
+ "loss": 0.3038,
327
+ "step": 470
328
+ },
329
+ {
330
+ "epoch": 0.31,
331
+ "learning_rate": 1e-05,
332
+ "loss": 0.2988,
333
+ "step": 480
334
+ },
335
+ {
336
+ "epoch": 0.31,
337
+ "learning_rate": 1e-05,
338
+ "loss": 0.3057,
339
+ "step": 490
340
+ },
341
+ {
342
+ "epoch": 0.32,
343
+ "learning_rate": 1e-05,
344
+ "loss": 0.3077,
345
+ "step": 500
346
+ },
347
+ {
348
+ "epoch": 0.33,
349
+ "learning_rate": 1e-05,
350
+ "loss": 0.2962,
351
+ "step": 510
352
+ },
353
+ {
354
+ "epoch": 0.33,
355
+ "learning_rate": 1e-05,
356
+ "loss": 0.3074,
357
+ "step": 520
358
+ },
359
+ {
360
+ "epoch": 0.34,
361
+ "learning_rate": 1e-05,
362
+ "loss": 0.2979,
363
+ "step": 530
364
+ },
365
+ {
366
+ "epoch": 0.34,
367
+ "learning_rate": 1e-05,
368
+ "loss": 0.3027,
369
+ "step": 540
370
+ },
371
+ {
372
+ "epoch": 0.35,
373
+ "learning_rate": 1e-05,
374
+ "loss": 0.2993,
375
+ "step": 550
376
+ },
377
+ {
378
+ "epoch": 0.36,
379
+ "learning_rate": 1e-05,
380
+ "loss": 0.3006,
381
+ "step": 560
382
+ },
383
+ {
384
+ "epoch": 0.36,
385
+ "learning_rate": 1e-05,
386
+ "loss": 0.3018,
387
+ "step": 570
388
+ },
389
+ {
390
+ "epoch": 0.37,
391
+ "learning_rate": 1e-05,
392
+ "loss": 0.3009,
393
+ "step": 580
394
+ },
395
+ {
396
+ "epoch": 0.38,
397
+ "learning_rate": 1e-05,
398
+ "loss": 0.2983,
399
+ "step": 590
400
+ },
401
+ {
402
+ "epoch": 0.38,
403
+ "learning_rate": 1e-05,
404
+ "loss": 0.2968,
405
+ "step": 600
406
+ },
407
+ {
408
+ "epoch": 0.38,
409
+ "eval_val_accuracy": 902.4047619047618,
410
+ "eval_val_loss": 0.30277058482170105,
411
+ "eval_val_runtime": 2248.9082,
412
+ "eval_val_samples_per_second": 4.447,
413
+ "eval_val_steps_per_second": 0.556,
414
+ "step": 600
415
+ },
416
+ {
417
+ "epoch": 0.38,
418
+ "eval_test_accuracy": 904.8809523809524,
419
+ "eval_test_loss": 0.3016507923603058,
420
+ "eval_test_runtime": 2249.9795,
421
+ "eval_test_samples_per_second": 4.444,
422
+ "eval_test_steps_per_second": 0.556,
423
+ "step": 600
424
+ },
425
+ {
426
+ "epoch": 0.39,
427
+ "learning_rate": 1e-05,
428
+ "loss": 0.3034,
429
+ "step": 610
430
+ },
431
+ {
432
+ "epoch": 0.4,
433
+ "learning_rate": 1e-05,
434
+ "loss": 0.304,
435
+ "step": 620
436
+ },
437
+ {
438
+ "epoch": 0.4,
439
+ "learning_rate": 1e-05,
440
+ "loss": 0.2947,
441
+ "step": 630
442
+ },
443
+ {
444
+ "epoch": 0.41,
445
+ "learning_rate": 1e-05,
446
+ "loss": 0.2953,
447
+ "step": 640
448
+ },
449
+ {
450
+ "epoch": 0.41,
451
+ "learning_rate": 1e-05,
452
+ "loss": 0.3028,
453
+ "step": 650
454
+ },
455
+ {
456
+ "epoch": 0.42,
457
+ "learning_rate": 1e-05,
458
+ "loss": 0.2979,
459
+ "step": 660
460
+ },
461
+ {
462
+ "epoch": 0.43,
463
+ "learning_rate": 1e-05,
464
+ "loss": 0.3039,
465
+ "step": 670
466
+ },
467
+ {
468
+ "epoch": 0.43,
469
+ "learning_rate": 1e-05,
470
+ "loss": 0.2969,
471
+ "step": 680
472
+ },
473
+ {
474
+ "epoch": 0.44,
475
+ "learning_rate": 1e-05,
476
+ "loss": 0.2994,
477
+ "step": 690
478
+ },
479
+ {
480
+ "epoch": 0.45,
481
+ "learning_rate": 1e-05,
482
+ "loss": 0.2961,
483
+ "step": 700
484
+ },
485
+ {
486
+ "epoch": 0.45,
487
+ "learning_rate": 1e-05,
488
+ "loss": 0.3031,
489
+ "step": 710
490
+ },
491
+ {
492
+ "epoch": 0.46,
493
+ "learning_rate": 1e-05,
494
+ "loss": 0.3037,
495
+ "step": 720
496
+ },
497
+ {
498
+ "epoch": 0.47,
499
+ "learning_rate": 1e-05,
500
+ "loss": 0.3008,
501
+ "step": 730
502
+ },
503
+ {
504
+ "epoch": 0.47,
505
+ "learning_rate": 1e-05,
506
+ "loss": 0.3089,
507
+ "step": 740
508
+ },
509
+ {
510
+ "epoch": 0.48,
511
+ "learning_rate": 1e-05,
512
+ "loss": 0.3061,
513
+ "step": 750
514
+ },
515
+ {
516
+ "epoch": 0.49,
517
+ "learning_rate": 1e-05,
518
+ "loss": 0.2987,
519
+ "step": 760
520
+ },
521
+ {
522
+ "epoch": 0.49,
523
+ "learning_rate": 1e-05,
524
+ "loss": 0.3041,
525
+ "step": 770
526
+ },
527
+ {
528
+ "epoch": 0.5,
529
+ "learning_rate": 1e-05,
530
+ "loss": 0.2993,
531
+ "step": 780
532
+ },
533
+ {
534
+ "epoch": 0.5,
535
+ "learning_rate": 1e-05,
536
+ "loss": 0.2936,
537
+ "step": 790
538
+ },
539
+ {
540
+ "epoch": 0.51,
541
+ "learning_rate": 1e-05,
542
+ "loss": 0.301,
543
+ "step": 800
544
+ },
545
+ {
546
+ "epoch": 0.51,
547
+ "eval_val_accuracy": 904.3333333333333,
548
+ "eval_val_loss": 0.30156368017196655,
549
+ "eval_val_runtime": 2246.2231,
550
+ "eval_val_samples_per_second": 4.452,
551
+ "eval_val_steps_per_second": 0.556,
552
+ "step": 800
553
+ },
554
+ {
555
+ "epoch": 0.51,
556
+ "eval_test_accuracy": 907.6904761904761,
557
+ "eval_test_loss": 0.3001132309436798,
558
+ "eval_test_runtime": 2247.6939,
559
+ "eval_test_samples_per_second": 4.449,
560
+ "eval_test_steps_per_second": 0.556,
561
+ "step": 800
562
+ },
563
+ {
564
+ "epoch": 0.52,
565
+ "learning_rate": 1e-05,
566
+ "loss": 0.299,
567
+ "step": 810
568
+ },
569
+ {
570
+ "epoch": 0.52,
571
+ "learning_rate": 1e-05,
572
+ "loss": 0.304,
573
+ "step": 820
574
+ },
575
+ {
576
+ "epoch": 0.53,
577
+ "learning_rate": 1e-05,
578
+ "loss": 0.3013,
579
+ "step": 830
580
+ },
581
+ {
582
+ "epoch": 0.54,
583
+ "learning_rate": 1e-05,
584
+ "loss": 0.2989,
585
+ "step": 840
586
+ },
587
+ {
588
+ "epoch": 0.54,
589
+ "learning_rate": 1e-05,
590
+ "loss": 0.3027,
591
+ "step": 850
592
+ },
593
+ {
594
+ "epoch": 0.55,
595
+ "learning_rate": 1e-05,
596
+ "loss": 0.3019,
597
+ "step": 860
598
+ },
599
+ {
600
+ "epoch": 0.56,
601
+ "learning_rate": 1e-05,
602
+ "loss": 0.3033,
603
+ "step": 870
604
+ },
605
+ {
606
+ "epoch": 0.56,
607
+ "learning_rate": 1e-05,
608
+ "loss": 0.2984,
609
+ "step": 880
610
+ },
611
+ {
612
+ "epoch": 0.57,
613
+ "learning_rate": 1e-05,
614
+ "loss": 0.2967,
615
+ "step": 890
616
+ },
617
+ {
618
+ "epoch": 0.57,
619
+ "learning_rate": 1e-05,
620
+ "loss": 0.3,
621
+ "step": 900
622
+ },
623
+ {
624
+ "epoch": 0.58,
625
+ "learning_rate": 1e-05,
626
+ "loss": 0.3025,
627
+ "step": 910
628
+ },
629
+ {
630
+ "epoch": 0.59,
631
+ "learning_rate": 1e-05,
632
+ "loss": 0.3037,
633
+ "step": 920
634
+ },
635
+ {
636
+ "epoch": 0.59,
637
+ "learning_rate": 1e-05,
638
+ "loss": 0.297,
639
+ "step": 930
640
+ },
641
+ {
642
+ "epoch": 0.6,
643
+ "learning_rate": 1e-05,
644
+ "loss": 0.3019,
645
+ "step": 940
646
+ },
647
+ {
648
+ "epoch": 0.61,
649
+ "learning_rate": 1e-05,
650
+ "loss": 0.2966,
651
+ "step": 950
652
+ },
653
+ {
654
+ "epoch": 0.61,
655
+ "learning_rate": 1e-05,
656
+ "loss": 0.3023,
657
+ "step": 960
658
+ },
659
+ {
660
+ "epoch": 0.62,
661
+ "learning_rate": 1e-05,
662
+ "loss": 0.2961,
663
+ "step": 970
664
+ },
665
+ {
666
+ "epoch": 0.63,
667
+ "learning_rate": 1e-05,
668
+ "loss": 0.2987,
669
+ "step": 980
670
+ },
671
+ {
672
+ "epoch": 0.63,
673
+ "learning_rate": 1e-05,
674
+ "loss": 0.2995,
675
+ "step": 990
676
+ },
677
+ {
678
+ "epoch": 0.64,
679
+ "learning_rate": 1e-05,
680
+ "loss": 0.2976,
681
+ "step": 1000
682
+ },
683
+ {
684
+ "epoch": 0.64,
685
+ "eval_val_accuracy": 906.5952380952382,
686
+ "eval_val_loss": 0.3006158769130707,
687
+ "eval_val_runtime": 2245.8387,
688
+ "eval_val_samples_per_second": 4.453,
689
+ "eval_val_steps_per_second": 0.557,
690
+ "step": 1000
691
+ },
692
+ {
693
+ "epoch": 0.64,
694
+ "eval_test_accuracy": 907.5952380952382,
695
+ "eval_test_loss": 0.29969537258148193,
696
+ "eval_test_runtime": 2246.9928,
697
+ "eval_test_samples_per_second": 4.45,
698
+ "eval_test_steps_per_second": 0.556,
699
+ "step": 1000
700
+ },
701
+ {
702
+ "epoch": 0.64,
703
+ "learning_rate": 1e-05,
704
+ "loss": 0.2988,
705
+ "step": 1010
706
+ },
707
+ {
708
+ "epoch": 0.65,
709
+ "learning_rate": 1e-05,
710
+ "loss": 0.2999,
711
+ "step": 1020
712
+ },
713
+ {
714
+ "epoch": 0.66,
715
+ "learning_rate": 1e-05,
716
+ "loss": 0.2995,
717
+ "step": 1030
718
+ },
719
+ {
720
+ "epoch": 0.66,
721
+ "learning_rate": 1e-05,
722
+ "loss": 0.2991,
723
+ "step": 1040
724
+ },
725
+ {
726
+ "epoch": 0.67,
727
+ "learning_rate": 1e-05,
728
+ "loss": 0.2922,
729
+ "step": 1050
730
+ },
731
+ {
732
+ "epoch": 0.68,
733
+ "learning_rate": 1e-05,
734
+ "loss": 0.2957,
735
+ "step": 1060
736
+ },
737
+ {
738
+ "epoch": 0.68,
739
+ "learning_rate": 1e-05,
740
+ "loss": 0.305,
741
+ "step": 1070
742
+ },
743
+ {
744
+ "epoch": 0.69,
745
+ "learning_rate": 1e-05,
746
+ "loss": 0.2996,
747
+ "step": 1080
748
+ },
749
+ {
750
+ "epoch": 0.7,
751
+ "learning_rate": 1e-05,
752
+ "loss": 0.3032,
753
+ "step": 1090
754
+ },
755
+ {
756
+ "epoch": 0.7,
757
+ "learning_rate": 1e-05,
758
+ "loss": 0.3,
759
+ "step": 1100
760
+ },
761
+ {
762
+ "epoch": 0.71,
763
+ "learning_rate": 1e-05,
764
+ "loss": 0.2937,
765
+ "step": 1110
766
+ },
767
+ {
768
+ "epoch": 0.71,
769
+ "learning_rate": 1e-05,
770
+ "loss": 0.2976,
771
+ "step": 1120
772
+ },
773
+ {
774
+ "epoch": 0.72,
775
+ "learning_rate": 1e-05,
776
+ "loss": 0.2993,
777
+ "step": 1130
778
+ },
779
+ {
780
+ "epoch": 0.73,
781
+ "learning_rate": 1e-05,
782
+ "loss": 0.2994,
783
+ "step": 1140
784
+ },
785
+ {
786
+ "epoch": 0.73,
787
+ "learning_rate": 1e-05,
788
+ "loss": 0.3033,
789
+ "step": 1150
790
+ },
791
+ {
792
+ "epoch": 0.74,
793
+ "learning_rate": 1e-05,
794
+ "loss": 0.3029,
795
+ "step": 1160
796
+ },
797
+ {
798
+ "epoch": 0.75,
799
+ "learning_rate": 1e-05,
800
+ "loss": 0.3014,
801
+ "step": 1170
802
+ },
803
+ {
804
+ "epoch": 0.75,
805
+ "learning_rate": 1e-05,
806
+ "loss": 0.2976,
807
+ "step": 1180
808
+ },
809
+ {
810
+ "epoch": 0.76,
811
+ "learning_rate": 1e-05,
812
+ "loss": 0.2978,
813
+ "step": 1190
814
+ },
815
+ {
816
+ "epoch": 0.77,
817
+ "learning_rate": 1e-05,
818
+ "loss": 0.2977,
819
+ "step": 1200
820
+ },
821
+ {
822
+ "epoch": 0.77,
823
+ "eval_val_accuracy": 905.9285714285714,
824
+ "eval_val_loss": 0.30016693472862244,
825
+ "eval_val_runtime": 2246.3367,
826
+ "eval_val_samples_per_second": 4.452,
827
+ "eval_val_steps_per_second": 0.556,
828
+ "step": 1200
829
+ },
830
+ {
831
+ "epoch": 0.77,
832
+ "eval_test_accuracy": 907.4761904761905,
833
+ "eval_test_loss": 0.29916131496429443,
834
+ "eval_test_runtime": 2247.4238,
835
+ "eval_test_samples_per_second": 4.45,
836
+ "eval_test_steps_per_second": 0.556,
837
+ "step": 1200
838
+ },
839
+ {
840
+ "epoch": 0.77,
841
+ "learning_rate": 1e-05,
842
+ "loss": 0.3029,
843
+ "step": 1210
844
+ },
845
+ {
846
+ "epoch": 0.78,
847
+ "learning_rate": 1e-05,
848
+ "loss": 0.2976,
849
+ "step": 1220
850
+ },
851
+ {
852
+ "epoch": 0.78,
853
+ "learning_rate": 1e-05,
854
+ "loss": 0.2965,
855
+ "step": 1230
856
+ },
857
+ {
858
+ "epoch": 0.79,
859
+ "learning_rate": 1e-05,
860
+ "loss": 0.2966,
861
+ "step": 1240
862
+ },
863
+ {
864
+ "epoch": 0.8,
865
+ "learning_rate": 1e-05,
866
+ "loss": 0.2993,
867
+ "step": 1250
868
+ },
869
+ {
870
+ "epoch": 0.8,
871
+ "learning_rate": 1e-05,
872
+ "loss": 0.2961,
873
+ "step": 1260
874
+ },
875
+ {
876
+ "epoch": 0.81,
877
+ "learning_rate": 1e-05,
878
+ "loss": 0.2959,
879
+ "step": 1270
880
+ },
881
+ {
882
+ "epoch": 0.82,
883
+ "learning_rate": 1e-05,
884
+ "loss": 0.2998,
885
+ "step": 1280
886
+ },
887
+ {
888
+ "epoch": 0.82,
889
+ "learning_rate": 1e-05,
890
+ "loss": 0.3024,
891
+ "step": 1290
892
+ },
893
+ {
894
+ "epoch": 0.83,
895
+ "learning_rate": 1e-05,
896
+ "loss": 0.2934,
897
+ "step": 1300
898
+ },
899
+ {
900
+ "epoch": 0.84,
901
+ "learning_rate": 1e-05,
902
+ "loss": 0.2966,
903
+ "step": 1310
904
+ },
905
+ {
906
+ "epoch": 0.84,
907
+ "learning_rate": 1e-05,
908
+ "loss": 0.3051,
909
+ "step": 1320
910
+ },
911
+ {
912
+ "epoch": 0.85,
913
+ "learning_rate": 1e-05,
914
+ "loss": 0.2988,
915
+ "step": 1330
916
+ },
917
+ {
918
+ "epoch": 0.86,
919
+ "learning_rate": 1e-05,
920
+ "loss": 0.3001,
921
+ "step": 1340
922
+ },
923
+ {
924
+ "epoch": 0.86,
925
+ "learning_rate": 1e-05,
926
+ "loss": 0.3032,
927
+ "step": 1350
928
+ },
929
+ {
930
+ "epoch": 0.87,
931
+ "learning_rate": 1e-05,
932
+ "loss": 0.2972,
933
+ "step": 1360
934
+ },
935
+ {
936
+ "epoch": 0.87,
937
+ "learning_rate": 1e-05,
938
+ "loss": 0.2996,
939
+ "step": 1370
940
+ },
941
+ {
942
+ "epoch": 0.88,
943
+ "learning_rate": 1e-05,
944
+ "loss": 0.298,
945
+ "step": 1380
946
+ },
947
+ {
948
+ "epoch": 0.89,
949
+ "learning_rate": 1e-05,
950
+ "loss": 0.2959,
951
+ "step": 1390
952
+ },
953
+ {
954
+ "epoch": 0.89,
955
+ "learning_rate": 1e-05,
956
+ "loss": 0.2951,
957
+ "step": 1400
958
+ },
959
+ {
960
+ "epoch": 0.89,
961
+ "eval_val_accuracy": 909.1904761904761,
962
+ "eval_val_loss": 0.2997502386569977,
963
+ "eval_val_runtime": 2245.4318,
964
+ "eval_val_samples_per_second": 4.453,
965
+ "eval_val_steps_per_second": 0.557,
966
+ "step": 1400
967
+ },
968
+ {
969
+ "epoch": 0.89,
970
+ "eval_test_accuracy": 907.5238095238095,
971
+ "eval_test_loss": 0.2989273965358734,
972
+ "eval_test_runtime": 2246.796,
973
+ "eval_test_samples_per_second": 4.451,
974
+ "eval_test_steps_per_second": 0.556,
975
+ "step": 1400
976
+ }
977
+ ],
978
+ "logging_steps": 10,
979
+ "max_steps": 7835,
980
+ "num_train_epochs": 5,
981
+ "save_steps": 200,
982
+ "total_flos": 0.0,
983
+ "trial_name": null,
984
+ "trial_params": null
985
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0970cf0f8a8b2c721397d2b59e62220a6e0b2228225ba1537abeaf5fd367de8
3
+ size 5307
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)