bentarnoff commited on
Commit
729735e
·
verified ·
1 Parent(s): 1bd3122

Model save

Browse files
Files changed (1) hide show
  1. README.md +149 -0
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ tags:
4
+ - generated_from_trainer
5
+ base_model: meta-llama/Llama-2-7b-hf
6
+ model-index:
7
+ - name: logic_magazine_jsonl
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ <details><summary>See axolotl config</summary>
16
+
17
+ axolotl version: `0.3.0`
18
+ ```yaml
19
+ # Image: winglian/axolotl:main-py3.10-cu118-2.0.1
20
+ base_model: meta-llama/Llama-2-7b-hf
21
+ base_model_config: meta-llama/Llama-2-7b-hf
22
+ model_type: LlamaForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+ is_llama_derived_model: true
25
+
26
+ load_in_8bit: false
27
+ load_in_4bit: true
28
+ strict: false
29
+
30
+ datasets:
31
+ - path: bentarnoff/logic_magazine_jsonl
32
+ type: sharegpt
33
+ hub_model_id: bentarnoff/logic_magazine_jsonl
34
+ val_set_size: 0.01
35
+ output_dir: ./qlora-out
36
+
37
+ adapter: qlora
38
+ lora_model_dir:
39
+
40
+ sequence_len: 4096
41
+ sample_packing: false
42
+ pad_to_sequence_len: true
43
+
44
+ lora_r: 32
45
+ lora_alpha: 16
46
+ lora_dropout: 0.05
47
+ lora_target_modules:
48
+ lora_target_linear: true
49
+ lora_fan_in_fan_out:
50
+
51
+ wandb_project: "logic_magazine"
52
+ wandb_entity:
53
+ wandb_watch:
54
+ wandb_run_id:
55
+ wandb_log_model: "checkpoint"
56
+
57
+ gradient_accumulation_steps: 4
58
+ micro_batch_size: 2
59
+ num_epochs: 3
60
+ optimizer: paged_adamw_32bit
61
+ lr_scheduler: cosine
62
+ learning_rate: 0.0002
63
+
64
+ train_on_inputs: false
65
+ group_by_length: false
66
+ bf16: true
67
+ fp16: false
68
+ tf32: false
69
+
70
+ gradient_checkpointing: true
71
+ early_stopping_patience:
72
+ resume_from_checkpoint:
73
+ local_rank:
74
+ logging_steps: 1
75
+ xformers_attention:
76
+ flash_attention: true
77
+
78
+ warmup_steps: 10
79
+ eval_steps: 20
80
+ eval_table_size: 5
81
+ save_steps:
82
+ debug:
83
+ deepspeed:
84
+ weight_decay: 0.0
85
+ fsdp:
86
+ fsdp_config:
87
+ special_tokens:
88
+ bos_token: "<s>"
89
+ eos_token: "</s>"
90
+ unk_token: "<unk>"
91
+ ```
92
+
93
+ </details><br>
94
+
95
+ # logic_magazine_jsonl
96
+
97
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
98
+
99
+ ## Model description
100
+
101
+ More information needed
102
+
103
+ ## Intended uses & limitations
104
+
105
+ More information needed
106
+
107
+ ## Training and evaluation data
108
+
109
+ More information needed
110
+
111
+ ## Training procedure
112
+
113
+
114
+ The following `bitsandbytes` quantization config was used during training:
115
+ - quant_method: bitsandbytes
116
+ - load_in_8bit: False
117
+ - load_in_4bit: True
118
+ - llm_int8_threshold: 6.0
119
+ - llm_int8_skip_modules: None
120
+ - llm_int8_enable_fp32_cpu_offload: False
121
+ - llm_int8_has_fp16_weight: False
122
+ - bnb_4bit_quant_type: nf4
123
+ - bnb_4bit_use_double_quant: True
124
+ - bnb_4bit_compute_dtype: bfloat16
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 0.0002
130
+ - train_batch_size: 2
131
+ - eval_batch_size: 2
132
+ - seed: 42
133
+ - distributed_type: multi-GPU
134
+ - num_devices: 4
135
+ - gradient_accumulation_steps: 4
136
+ - total_train_batch_size: 32
137
+ - total_eval_batch_size: 8
138
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
139
+ - lr_scheduler_type: cosine
140
+ - lr_scheduler_warmup_steps: 10
141
+ - num_epochs: 3
142
+
143
+ ### Framework versions
144
+
145
+ - PEFT 0.7.0
146
+ - Transformers 4.37.0.dev0
147
+ - Pytorch 2.0.1+cu118
148
+ - Datasets 2.16.1
149
+ - Tokenizers 0.15.0