File size: 5,058 Bytes
1ec98f3 5ba2982 1ec98f3 c41e564 1ec98f3 c41e564 5b7a90a 1ec98f3 c41e564 5ba2982 1ec98f3 d0ec9b2 5b7a90a 1ec98f3 5b7a90a 1ec98f3 c5ccd83 1ec98f3 5ba2982 1ec98f3 5ba2982 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
language: de
widget:
- text: "In einer schockierenden Entdeckung fanden Wissenschaftler eine Herde Einhörner, die in einem abgelegenen, zuvor unerforschten Tal in den Anden lebten."
license: mit
---
# GerPT2
German large and small versions of GPT2:
- https://huggingface.co/benjamin/gerpt2
- https://huggingface.co/benjamin/gerpt2-large
See the [GPT2 model card](https://huggingface.co/gpt2) for considerations on limitations and bias. See the [GPT2 documentation](https://huggingface.co/transformers/model_doc/gpt2.html) for details on GPT2.
## Comparison to [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2)
I evaluated both GerPT2-large and the other German GPT2, [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2) on the [CC-100](http://data.statmt.org/cc-100/) dataset and on the German Wikipedia:
| | CC-100 (PPL) | Wikipedia (PPL) |
|-------------------|--------------|-----------------|
| dbmdz/german-gpt2 | 49.47 | 62.92 |
| GerPT2 | 24.78 | 35.33 |
| GerPT2-large | __16.08__ | __23.26__ |
| | | |
See the script `evaluate.py` in the [GerPT2 Github repository](https://github.com/bminixhofer/gerpt2) for the code.
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("benjamin/gerpt2-large")
model = AutoModelForCausalLM.from_pretrained("benjamin/gerpt2-large")
prompt = "<your prompt>"
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
print(pipe(prompt)[0]["generated_text"])
```
Also, two tricks might improve the generated text:
```python
output = model.generate(
# during training an EOS token was used to mark the beginning of each text
# so it can help to insert it at the start
torch.tensor(
[tokenizer.eos_token_id] + tokenizer.encode(prompt)
).unsqueeze(0),
do_sample=True,
# try setting bad_words_ids=[[0]] to disallow generating an EOS token, without this the model is
# prone to ending generation early because a significant number of texts from the training corpus
# is quite short
bad_words_ids=[[0]],
max_length=max_length,
)[0]
print(tokenizer.decode(output))
```
## Training details
GerPT2-large is trained on the entire German data from the [CC-100 Corpus](http://data.statmt.org/cc-100/) and weights were initialized from the [English GPT2 model](https://huggingface.co/gpt2-large).
GerPT2-large was trained with:
- a batch size of 256
- using OneCycle learning rate with a maximum of 5e-3
- with AdamW with a weight decay of 0.01
- for 2 epochs
Training took roughly 12 days on 8 TPUv3 cores.
To train GerPT2-large, follow these steps. Scripts are located in the [Github repository](https://github.com/bminixhofer/gerpt2):
0. Download and unzip training data from http://data.statmt.org/cc-100/.
1. Train a tokenizer using `prepare/train_tokenizer.py`. As training data for the tokenizer I used a random subset of 5% of the CC-100 data.
2. (optionally) generate a German input embedding matrix with `prepare/generate_aligned_wte.py`. This uses a neat trick to semantically map tokens from the English tokenizer to tokens from the German tokenizer using aligned word embeddings. E. g.:
```
ĠMinde -> Ġleast
Ġjed -> Ġwhatsoever
flughafen -> Air
vermittlung -> employment
teilung -> ignment
ĠInterpretation -> Ġinterpretation
Ġimport -> Ġimported
hansa -> irl
genehmigungen -> exempt
ĠAuflist -> Ġlists
Ġverschwunden -> Ġdisappeared
ĠFlyers -> ĠFlyers
Kanal -> Channel
Ġlehr -> Ġteachers
Ġnahelie -> Ġconvenient
gener -> Generally
mitarbeiter -> staff
```
This helps a lot on a trial run I did, although I wasn't able to do a full comparison due to budget and time constraints. To use this WTE matrix it can be passed via the `wte_path` to the training script. Credit to [this blogpost](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787) for the idea of initializing GPT2 from English weights.
3. Tokenize the corpus using `prepare/tokenize_text.py`. This generates files for train and validation tokens in JSON Lines format.
4. Run the training script `train.py`! `run.sh` shows how this was executed for the full run with config `configs/tpu_large.json`.
## License
GerPT2 is licensed under the MIT License.
## Citing
Please cite GerPT2 as follows:
```
@misc{Minixhofer_GerPT2_German_large_2020,
author = {Minixhofer, Benjamin},
doi = {10.5281/zenodo.5509984},
month = {12},
title = {{GerPT2: German large and small versions of GPT2}},
url = {https://github.com/bminixhofer/gerpt2},
year = {2020}
}
```
## Acknowledgements
Thanks to [Hugging Face](https://huggingface.co) for awesome tools and infrastructure.
Huge thanks to [Artus Krohn-Grimberghe](https://twitter.com/artuskg) at [LYTiQ](https://www.lytiq.de/) for making this possible by sponsoring the resources used for training.
|