"""TPU Gemma3 model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation class TPUGemma3Config(PretrainedConfig): model_type = "tpu_gemma3" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=262_208, hidden_size=2304, intermediate_size=9216, num_hidden_layers=26, num_attention_heads=8, num_key_value_heads=4, head_dim=256, hidden_activation="gelu_pytorch_tanh", max_position_embeddings=131_072, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=1_000_000.0, attention_bias=False, attention_dropout=0.0, query_pre_attn_scalar=256, sliding_window=4096, final_logit_softcapping=None, attn_logit_softcapping=None, cache_implementation="hybrid", rope_scaling=None, rope_local_base_freq=10_000.0, sliding_window_pattern=6, expand_input_ids=False, # Transformers-native PyTorch generation support expand_input_ids_maxlen=None, expand_input_ids_vocab_size=None, expand_input_ids_dict=None, project_mode=None, # latent projection args previous_hidden_size=None, skip_out_norm=False, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.hidden_activation = hidden_activation self.query_pre_attn_scalar = query_pre_attn_scalar self.sliding_window = sliding_window self.final_logit_softcapping = final_logit_softcapping self.attn_logit_softcapping = attn_logit_softcapping self.cache_implementation = cache_implementation self.rope_local_base_freq = rope_local_base_freq # For configuring HybridCache to work with 5:1 attention pattern self.sliding_window_pattern = sliding_window_pattern self.rope_scaling = rope_scaling rope_config_validation(self) self.expand_input_ids = expand_input_ids self.expand_input_ids_maxlen = expand_input_ids_maxlen self.expand_input_ids_vocab_size = expand_input_ids_vocab_size self.expand_input_ids_dict = expand_input_ids_dict self.project_mode = project_mode self.previous_hidden_size = previous_hidden_size self.skip_out_norm = skip_out_norm