gemma-3-1b-pt-flax / modelling_flax_tpu_gemma3.py
benjamin's picture
Upload FlaxTPUGemma3ForCausalLM
0807ed1 verified
"""Flax TPU Gemma3 model."""
from typing import Optional, Tuple
import copy
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.linen import partitioning as nn_partitioning
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.sharding import PartitionSpec as P
from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_tpu_gemma3 import TPUGemma3Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "TPUGemma3Config"
_CHECKPOINT_FOR_DOC = "google/gemma-2-2b"
_REAL_CHECKPOINT_FOR_DOC = "openlm-research/open_llama_3b_v2"
TPU_GEMMA3_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`GemmaConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or
`jax.numpy.bfloat16`.
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
TPU_GEMMA3_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
remat = nn_partitioning.remat
def create_sinusoidal_positions(num_pos, dim):
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2)[: (dim // 2)] / dim))
freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
emb = np.concatenate((freqs, freqs), axis=-1)
out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1)
return jnp.array(out[:, :, :num_pos])
# Copied from transformers.models.llama.modeling_flax_llama.rotate_half
def rotate_half(tensor):
"""Rotates half the hidden dims of the input."""
rotate_half_tensor = jnp.concatenate(
(-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1
)
return rotate_half_tensor
# Copied from transformers.models.llama.modeling_flax_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(tensor, sin_pos, cos_pos):
return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos)
class FlaxTPUGemma3RMSNorm(nn.Module):
config: TPUGemma3Config
dim_override: Optional[int] = None
dtype: jnp.dtype = jnp.float32
add_in_projection: bool = False
add_out_projection: bool = False
def setup(self):
self.epsilon = self.config.rms_norm_eps
self.weight_is_matrix = False
if self.dim_override is not None:
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.dim_override)
else:
if self.add_in_projection:
self.in_projection = self.param("in_projection", lambda _, shape: jnp.empty(shape), (self.config.hidden_size, self.config.previous_hidden_size))
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.previous_hidden_size)
elif self.config.project_mode == "wrap":
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.previous_hidden_size)
elif isinstance(self.config.project_mode, str) and self.config.project_mode.startswith("fuse"):
self.weight = self.param("weight", lambda _, shape: jnp.eye(shape), self.config.hidden_size)
self.weight_is_matrix = True
else:
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size)
if self.add_out_projection:
self.out_projection = self.param("out_projection", lambda _, shape: jnp.empty(shape), (self.config.previous_hidden_size, self.config.hidden_size))
def __call__(self, hidden_states):
if self.add_in_projection:
hidden_states = hidden_states @ self.in_projection
variance = jnp.asarray(hidden_states, dtype=jnp.float32)
variance = jnp.power(variance, 2)
variance = variance.mean(-1, keepdims=True)
# use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt`
hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon)
if self.weight_is_matrix:
hidden_states = jnp.asarray(hidden_states, dtype=self.dtype) @ self.weight
else:
hidden_states = (1 + self.weight) * jnp.asarray(hidden_states, dtype=self.dtype)
if self.add_out_projection:
hidden_states = hidden_states @ self.out_projection
return hidden_states
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRotaryEmbedding with Llama->Gemma3
class FlaxTPUGemma3RotaryEmbedding(nn.Module):
config: TPUGemma3Config
dtype: jnp.dtype = jnp.float32
# Ignore copy
def setup(self):
head_dim = self.config.head_dim
self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim)
def __call__(self, position_ids):
sincos = self.sincos[position_ids]
sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1)
return sin_pos, cos_pos
class FlaxTPUGemma3Attention(nn.Module):
config: TPUGemma3Config
layer_idx: int
dtype: jnp.dtype = jnp.float32
causal: bool = True
is_cross_attention: bool = False
def setup(self):
self.is_sliding = bool((self.layer_idx + 1) % self.config.sliding_window_pattern)
self.sliding_window = self.config.sliding_window if self.is_sliding else None
config = self.config
if self.config.project_mode == "wrap":
self.embed_dim = config.previous_hidden_size
else:
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
# otherwise we would manually have to scale attn weights
assert config.query_pre_attn_scalar == config.head_dim
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
kernel = jax.nn.initializers.normal(self.config.initializer_range)
self.q_proj = nn.Dense(
self.num_heads * self.head_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel
)
self.k_proj = nn.Dense(
self.num_key_value_heads * self.head_dim,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=kernel,
)
self.v_proj = nn.Dense(
self.num_key_value_heads * self.head_dim,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=kernel,
)
self.q_norm = FlaxTPUGemma3RMSNorm(self.config, dtype=self.dtype, dim_override=self.head_dim)
self.k_norm = FlaxTPUGemma3RMSNorm(self.config, dtype=self.dtype, dim_override=self.head_dim)
self.o_proj = nn.Dense(self.embed_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel)
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
def _split_heads(self, hidden_states, num_heads):
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads * self.head_dim,))
@nn.compact
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
position_embeddings,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
raw_query = self.q_proj(hidden_states)
raw_key = self.k_proj(hidden_states)
raw_value = self.v_proj(hidden_states)
query = self._split_heads(raw_query, self.num_heads)
key = self._split_heads(raw_key, self.num_key_value_heads)
value = self._split_heads(raw_value, self.num_key_value_heads)
query = self.q_norm(query)
key = self.k_norm(key)
sin, cos = position_embeddings
key = jnp.asarray(apply_rotary_pos_emb(key, sin, cos), dtype=self.dtype)
query = jnp.asarray(apply_rotary_pos_emb(query, sin, cos), dtype=self.dtype)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
batch_size = hidden_states.shape[0]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
if self.sliding_window is not None:
min_dtype = jnp.finfo(hidden_states.dtype).min
sliding_window_mask = jnp.tril(
jnp.ones_like(attention_mask, dtype=bool), k=-self.sliding_window
)
attention_mask = jnp.where(sliding_window_mask, min_dtype, attention_mask)
if attention_mask.shape[-1] <= 1: # when decoding
attention_mask = attention_mask[:, :, :, -self.sliding_window :]
dropout_rng = None
if not deterministic and self.config.attention_dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
key = jnp.repeat(key, repeats=self.num_key_value_groups, axis=2)
value = jnp.repeat(value, repeats=self.num_key_value_groups, axis=2)
# usual dot product attention
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_dropout,
deterministic=deterministic,
dtype=attention_dtype,
)
if self.config.attn_logit_softcapping is not None:
attn_weights = attn_weights / self.config.attn_logit_softcapping
attn_weights = jnp.tanh(attn_weights)
attn_weights = attn_weights * self.config.attn_logit_softcapping
if self.attention_softmax_in_fp32:
attn_weights = attn_weights.astype(self.dtype)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.o_proj(attn_output)
outputs = (attn_output, (raw_query, raw_key, raw_value)) if output_attentions else (attn_output,)
return outputs
class FlaxTPUGemma3MLP(nn.Module):
config: TPUGemma3Config
dtype: jnp.dtype = jnp.float32
def setup(self):
if self.config.project_mode == "wrap":
embed_dim = self.config.previous_hidden_size
else:
embed_dim = self.config.hidden_size
inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
if self.config.hidden_activation is None:
logger.warning_once(
"Gemma3's activation function should be approximate GeLU and not exact GeLU. "
"Changing the activation function to `gelu_pytorch_tanh`."
f"if you want to use the legacy `{self.config.hidden_act}`, "
f"edit the `model.config` to set `hidden_activation={self.config.hidden_act}` "
" instead of `hidden_act`. See https://github.com/huggingface/transformers/pull/29402 for more details."
)
hidden_activation = "gelu_pytorch_tanh"
else:
hidden_activation = self.config.hidden_activation
self.act = ACT2FN[hidden_activation]
self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
def __call__(self, hidden_states):
up_proj_states = self.up_proj(hidden_states)
gate_states = self.act(self.gate_proj(hidden_states))
hidden_states = self.down_proj(up_proj_states * gate_states)
return hidden_states
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaDecoderLayer with Llama->Gemma3
class FlaxTPUGemma3DecoderLayer(nn.Module):
config: TPUGemma3Config
layer_idx: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.input_layernorm = FlaxTPUGemma3RMSNorm(self.config, dtype=self.dtype, add_in_projection=self.config.project_mode == "wrap")
self.self_attn = FlaxTPUGemma3Attention(self.config, self.layer_idx, dtype=self.dtype)
self.pre_feedforward_layernorm = FlaxTPUGemma3RMSNorm(self.config, dtype=self.dtype, add_in_projection=self.config.project_mode == "wrap")
self.post_feedforward_layernorm = FlaxTPUGemma3RMSNorm(self.config, dtype=self.dtype, add_out_projection=self.config.project_mode == "wrap")
self.post_attention_layernorm = FlaxTPUGemma3RMSNorm(self.config, dtype=self.dtype, add_out_projection=self.config.project_mode == "wrap")
self.mlp = FlaxTPUGemma3MLP(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
position_embeddings_global,
position_embeddings_local,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
mesh = getattr(self.config, "mesh", None)
if mesh is not None:
hidden_states = jax.lax.with_sharding_constraint(
hidden_states, jax.sharding.NamedSharding(mesh, P("data", None, "model"))
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# apply global RoPE to non-sliding layer only
if self.self_attn.is_sliding:
position_embeddings = position_embeddings_local
else:
position_embeddings = position_embeddings_global
outputs = self.self_attn(
hidden_states,
position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
# residual connection
attn_output = self.post_attention_layernorm(outputs[0])
hidden_states = residual + attn_output
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
mlp_output = self.post_feedforward_layernorm(hidden_states)
# residual connection
hidden_states = residual + mlp_output
return (hidden_states, attn_output, mlp_output)
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Gemma3, GPT_NEO->Gemma3, transformer->model
class FlaxTPUGemma3PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TPUGemma3Config
base_model_prefix = "model"
module_class: nn.Module = None
def __init__(
self,
config: TPUGemma3Config,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
@classmethod
def can_generate(cls) -> bool:
# disable generation, handled separately
# this is convenient since GenerationConfig.from_model_config(config) needs a pickleable config
return False
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, None, attention_mask, position_ids, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, None, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(TPU_GEMMA3_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
inputs_embeds=None,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if input_ids is not None:
batch_size, sequence_length = input_ids.shape
else:
batch_size, sequence_length, _ = inputs_embeds.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGemma3Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4") if input_ids is not None else None,
inputs_embeds if inputs_embeds is not None else None,
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaLayerCollection with Llama->Gemma3
class FlaxTPUGemma3LayerCollection(nn.Module):
config: TPUGemma3Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.rotary_emb = FlaxTPUGemma3RotaryEmbedding(config=self.config)
mesh = getattr(self.config, "mesh", None)
del self.config.mesh
local_config = copy.deepcopy(self.config)
if mesh is not None:
self.config.mesh = mesh
local_config.rope_theta = self.config.rope_local_base_freq
local_config.rope_scaling = {"rope_type": "default"}
self.rotary_emb_local = FlaxTPUGemma3RotaryEmbedding(config=local_config)
if self.gradient_checkpointing:
FlaxTPUGemma3DecoderCheckpointLayer = remat(FlaxTPUGemma3DecoderLayer, static_argnums=(3, 4, 5))
self.blocks = [
FlaxTPUGemma3DecoderCheckpointLayer(self.config, layer_idx, dtype=self.dtype, name=str(layer_idx))
for layer_idx in range(self.config.num_hidden_layers)
]
else:
self.blocks = [
FlaxTPUGemma3DecoderLayer(self.config, layer_idx, dtype=self.dtype, name=str(layer_idx))
for layer_idx in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
):
all_attentions = () if output_attentions else None
all_hidden_states = [(), ()] if output_hidden_states else None
position_embeddings_global = self.rotary_emb(position_ids)
position_embeddings_local = self.rotary_emb_local(position_ids)
if output_hidden_states:
all_hidden_states[0] += (hidden_states,)
all_hidden_states[1] += (hidden_states,)
for block_idx, block in enumerate(self.blocks):
layer_outputs = block(
hidden_states,
position_embeddings_global,
position_embeddings_local,
attention_mask,
position_ids,
deterministic,
init_cache,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_hidden_states:
# last block is followed by norm - added later
if block_idx != len(self.blocks) - 1:
all_hidden_states[0] += (hidden_states,)
all_hidden_states[1] += layer_outputs[1:]
if output_attentions:
raise NotImplementedError("Attention outputs are not implemented for TPUGemma3 (with projections).")
# this contains possible `None` values - `FlaxGemma3Module` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModule with Llama->Gemma3
class FlaxTPUGemma3Module(nn.Module):
config: TPUGemma3Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
if self.config.project_mode == "wrap":
self.hidden_size = self.config.previous_hidden_size
else:
self.hidden_size = self.config.hidden_size
embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
self.embed_tokens = nn.Embed(
self.config.vocab_size,
self.hidden_size,
embedding_init=embedding_init,
dtype=self.dtype,
)
self.layers = FlaxTPUGemma3LayerCollection(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.norm = FlaxTPUGemma3RMSNorm(self.config, dtype=self.dtype, add_in_projection=self.config.project_mode == "wrap", add_out_projection=False)
if self.config.project_mode == "wrap":
self.embedding_projection = self.param("embedding_projection", lambda _, shape: jnp.empty(shape), (self.config.previous_hidden_size, self.config.hidden_size))
def embed(
self,
input_ids,
):
inputs_embeds = self.embed_tokens(input_ids.astype("i4"))
if self.config.project_mode is not None:
scaler = self.config.previous_hidden_size ** 0.5
else:
scaler = self.config.hidden_size ** 0.5
inputs_embeds = inputs_embeds * scaler
if self.config.project_mode == "wrap":
inputs_embeds = inputs_embeds @ self.embedding_projection
return inputs_embeds
# Ignore copy
def __call__(
self,
input_ids,
inputs_embeds=None,
attention_mask=None,
position_ids=None,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
if inputs_embeds is None:
inputs_embeds = self.embed(input_ids)
outputs = self.layers(
inputs_embeds,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if not self.config.skip_out_norm:
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1]
all_hidden_states[0] += (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare Gemma3 Model transformer outputting raw hidden-states without any specific head on top.",
TPU_GEMMA3_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModel with Llama->Gemma3
class FlaxTPUGemma3Model(FlaxTPUGemma3PreTrainedModel):
module_class = FlaxTPUGemma3Module
append_call_sample_docstring(
FlaxTPUGemma3Model,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutput,
_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaForCausalLMModule with Llama->Gemma3
class FlaxTPUGemma3ForCausalLMModule(nn.Module):
config: TPUGemma3Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.model = FlaxTPUGemma3Module(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def embed(self, input_ids):
return self.model.embed(input_ids)
# Ignore copy
def __call__(
self,
input_ids,
inputs_embeds=None,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.model(
input_ids,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
# should be skipped automatically in this case (since unused), but check if JIT actually does this
if not self.config.skip_out_norm:
if self.config.tie_word_embeddings:
shared_kernel = self.model.variables["params"]["embed_tokens"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
lm_logits = jax.lax.with_sharding_constraint(
lm_logits,
jax.sharding.NamedSharding(getattr(self.config, "mesh"), P("data", None, "model")),
)
if self.config.final_logit_softcapping is not None:
lm_logits = lm_logits / self.config.final_logit_softcapping
lm_logits = jnp.tanh(lm_logits)
lm_logits = lm_logits * self.config.final_logit_softcapping
else:
lm_logits = None
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The Gemma3 Model transformer with a language modeling head (linear layer) on top.
""",
TPU_GEMMA3_START_DOCSTRING,
)
# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Gemma3
class FlaxTPUGemma3ForCausalLM(FlaxTPUGemma3PreTrainedModel):
module_class = FlaxTPUGemma3ForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since Gemma3 uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxTPUGemma3ForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)