benjamin commited on
Commit
dc7e313
·
1 Parent(s): 075d234
README.md DELETED
@@ -1,199 +0,0 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
The diff for this file is too large to render. See raw diff
 
configuration_tpu_llama.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class TPULlamaConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`TPULlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_heads
128
+
129
+ ```python
130
+ >>> from transformers import LlamaModel, LlamaConfig
131
+
132
+ >>> # Initializing a LLaMA llama-7b style configuration
133
+ >>> configuration = LlamaConfig()
134
+
135
+ >>> # Initializing a model from the llama-7b style configuration
136
+ >>> model = LlamaModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "tpu_llama"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+
145
+ def __init__(
146
+ self,
147
+ vocab_size=32000,
148
+ hidden_size=4096,
149
+ intermediate_size=11008,
150
+ num_hidden_layers=32,
151
+ num_attention_heads=32,
152
+ num_key_value_heads=None,
153
+ hidden_act="silu",
154
+ max_position_embeddings=2048,
155
+ initializer_range=0.02,
156
+ rms_norm_eps=1e-6,
157
+ use_cache=True,
158
+ pad_token_id=None,
159
+ bos_token_id=1,
160
+ eos_token_id=2,
161
+ pretraining_tp=1,
162
+ tie_word_embeddings=False,
163
+ rope_theta=10000.0,
164
+ rope_scaling=None,
165
+ attention_bias=False,
166
+ attention_dropout=0.0,
167
+ mlp_bias=False,
168
+ head_dim=None,
169
+ expand_input_ids=False, # Transformers-native PyTorch generation support
170
+ expand_input_ids_maxlen=None,
171
+ expand_input_ids_vocab_size=None,
172
+ expand_input_ids_dict=None,
173
+ **kwargs,
174
+ ):
175
+ self.vocab_size = vocab_size
176
+ self.max_position_embeddings = max_position_embeddings
177
+ self.hidden_size = hidden_size
178
+ self.intermediate_size = intermediate_size
179
+ self.num_hidden_layers = num_hidden_layers
180
+ self.num_attention_heads = num_attention_heads
181
+
182
+ # for backward compatibility
183
+ if num_key_value_heads is None:
184
+ num_key_value_heads = num_attention_heads
185
+
186
+ self.num_key_value_heads = num_key_value_heads
187
+ self.hidden_act = hidden_act
188
+ self.initializer_range = initializer_range
189
+ self.rms_norm_eps = rms_norm_eps
190
+ self.pretraining_tp = pretraining_tp
191
+ self.use_cache = use_cache
192
+ self.rope_theta = rope_theta
193
+ self.rope_scaling = rope_scaling
194
+ self.attention_bias = attention_bias
195
+ self.attention_dropout = attention_dropout
196
+ self.mlp_bias = mlp_bias
197
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
198
+ # Validate the correctness of rotary position embeddings parameters
199
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
200
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
201
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
202
+ rope_config_validation(self)
203
+
204
+ self.expand_input_ids = expand_input_ids
205
+ self.expand_input_ids_maxlen = expand_input_ids_maxlen
206
+ self.expand_input_ids_vocab_size = expand_input_ids_vocab_size
207
+ self.expand_input_ids_dict = expand_input_ids_dict
208
+
209
+ super().__init__(
210
+ pad_token_id=pad_token_id,
211
+ bos_token_id=bos_token_id,
212
+ eos_token_id=eos_token_id,
213
+ tie_word_embeddings=tie_word_embeddings,
214
+ **kwargs,
215
+ )
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fac95617b354832a8235523ebbe6b881395032501d245342b1e60a30e7e7156b
3
+ size 11319336568
flax_model.msgpack.index.json DELETED
@@ -1,262 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 11287670784
4
- },
5
- "weight_map": {
6
- "lm_head/kernel": "flax_model-00001-of-00003.msgpack",
7
- "model/embed_tokens/embedding": "flax_model-00001-of-00003.msgpack",
8
- "model/layers/0/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
9
- "model/layers/0/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
10
- "model/layers/0/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
11
- "model/layers/0/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
12
- "model/layers/0/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
13
- "model/layers/0/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
14
- "model/layers/0/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
15
- "model/layers/0/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
16
- "model/layers/0/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
17
- "model/layers/1/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
18
- "model/layers/1/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
19
- "model/layers/1/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
20
- "model/layers/1/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
21
- "model/layers/1/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
22
- "model/layers/1/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
23
- "model/layers/1/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
24
- "model/layers/1/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
25
- "model/layers/1/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
26
- "model/layers/10/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
27
- "model/layers/10/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
28
- "model/layers/10/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
29
- "model/layers/10/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
30
- "model/layers/10/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
31
- "model/layers/10/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
32
- "model/layers/10/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
33
- "model/layers/10/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
34
- "model/layers/10/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
35
- "model/layers/11/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
36
- "model/layers/11/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
37
- "model/layers/11/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
38
- "model/layers/11/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
39
- "model/layers/11/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
40
- "model/layers/11/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
41
- "model/layers/11/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
42
- "model/layers/11/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
43
- "model/layers/11/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
44
- "model/layers/12/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
45
- "model/layers/12/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
46
- "model/layers/12/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
47
- "model/layers/12/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
48
- "model/layers/12/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
49
- "model/layers/12/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
50
- "model/layers/12/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
51
- "model/layers/12/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
52
- "model/layers/12/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
53
- "model/layers/13/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
54
- "model/layers/13/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
55
- "model/layers/13/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
56
- "model/layers/13/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
57
- "model/layers/13/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
58
- "model/layers/13/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
59
- "model/layers/13/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
60
- "model/layers/13/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
61
- "model/layers/13/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
62
- "model/layers/14/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
63
- "model/layers/14/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
64
- "model/layers/14/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
65
- "model/layers/14/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
66
- "model/layers/14/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
67
- "model/layers/14/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
68
- "model/layers/14/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
69
- "model/layers/14/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
70
- "model/layers/14/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
71
- "model/layers/15/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
72
- "model/layers/15/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
73
- "model/layers/15/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
74
- "model/layers/15/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
75
- "model/layers/15/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
76
- "model/layers/15/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
77
- "model/layers/15/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
78
- "model/layers/15/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
79
- "model/layers/15/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
80
- "model/layers/16/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
81
- "model/layers/16/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
82
- "model/layers/16/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
83
- "model/layers/16/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
84
- "model/layers/16/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
85
- "model/layers/16/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
86
- "model/layers/16/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
87
- "model/layers/16/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
88
- "model/layers/16/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
89
- "model/layers/17/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
90
- "model/layers/17/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
91
- "model/layers/17/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
92
- "model/layers/17/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
93
- "model/layers/17/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
94
- "model/layers/17/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
95
- "model/layers/17/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
96
- "model/layers/17/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
97
- "model/layers/17/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
98
- "model/layers/18/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
99
- "model/layers/18/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
100
- "model/layers/18/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
101
- "model/layers/18/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
102
- "model/layers/18/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
103
- "model/layers/18/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
104
- "model/layers/18/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
105
- "model/layers/18/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
106
- "model/layers/18/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
107
- "model/layers/19/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
108
- "model/layers/19/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
109
- "model/layers/19/mlp/gate_proj/kernel": "flax_model-00001-of-00003.msgpack",
110
- "model/layers/19/mlp/up_proj/kernel": "flax_model-00001-of-00003.msgpack",
111
- "model/layers/19/post_attention_layernorm/weight": "flax_model-00001-of-00003.msgpack",
112
- "model/layers/19/self_attn/k_proj/kernel": "flax_model-00001-of-00003.msgpack",
113
- "model/layers/19/self_attn/o_proj/kernel": "flax_model-00001-of-00003.msgpack",
114
- "model/layers/19/self_attn/q_proj/kernel": "flax_model-00001-of-00003.msgpack",
115
- "model/layers/19/self_attn/v_proj/kernel": "flax_model-00001-of-00003.msgpack",
116
- "model/layers/2/input_layernorm/weight": "flax_model-00001-of-00003.msgpack",
117
- "model/layers/2/mlp/down_proj/kernel": "flax_model-00001-of-00003.msgpack",
118
- "model/layers/2/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
119
- "model/layers/2/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
120
- "model/layers/2/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
121
- "model/layers/2/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
122
- "model/layers/2/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
123
- "model/layers/2/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
124
- "model/layers/2/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
125
- "model/layers/20/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
126
- "model/layers/20/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
127
- "model/layers/20/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
128
- "model/layers/20/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
129
- "model/layers/20/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
130
- "model/layers/20/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
131
- "model/layers/20/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
132
- "model/layers/20/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
133
- "model/layers/20/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
134
- "model/layers/21/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
135
- "model/layers/21/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
136
- "model/layers/21/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
137
- "model/layers/21/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
138
- "model/layers/21/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
139
- "model/layers/21/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
140
- "model/layers/21/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
141
- "model/layers/21/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
142
- "model/layers/21/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
143
- "model/layers/22/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
144
- "model/layers/22/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
145
- "model/layers/22/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
146
- "model/layers/22/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
147
- "model/layers/22/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
148
- "model/layers/22/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
149
- "model/layers/22/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
150
- "model/layers/22/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
151
- "model/layers/22/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
152
- "model/layers/23/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
153
- "model/layers/23/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
154
- "model/layers/23/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
155
- "model/layers/23/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
156
- "model/layers/23/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
157
- "model/layers/23/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
158
- "model/layers/23/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
159
- "model/layers/23/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
160
- "model/layers/23/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
161
- "model/layers/24/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
162
- "model/layers/24/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
163
- "model/layers/24/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
164
- "model/layers/24/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
165
- "model/layers/24/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
166
- "model/layers/24/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
167
- "model/layers/24/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
168
- "model/layers/24/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
169
- "model/layers/24/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
170
- "model/layers/25/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
171
- "model/layers/25/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
172
- "model/layers/25/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
173
- "model/layers/25/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
174
- "model/layers/25/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
175
- "model/layers/25/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
176
- "model/layers/25/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
177
- "model/layers/25/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
178
- "model/layers/25/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
179
- "model/layers/26/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
180
- "model/layers/26/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
181
- "model/layers/26/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
182
- "model/layers/26/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
183
- "model/layers/26/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
184
- "model/layers/26/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
185
- "model/layers/26/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
186
- "model/layers/26/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
187
- "model/layers/26/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
188
- "model/layers/27/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
189
- "model/layers/27/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
190
- "model/layers/27/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
191
- "model/layers/27/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
192
- "model/layers/27/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
193
- "model/layers/27/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
194
- "model/layers/27/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
195
- "model/layers/27/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
196
- "model/layers/27/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
197
- "model/layers/3/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
198
- "model/layers/3/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
199
- "model/layers/3/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
200
- "model/layers/3/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
201
- "model/layers/3/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
202
- "model/layers/3/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
203
- "model/layers/3/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
204
- "model/layers/3/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
205
- "model/layers/3/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
206
- "model/layers/4/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
207
- "model/layers/4/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
208
- "model/layers/4/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
209
- "model/layers/4/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
210
- "model/layers/4/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
211
- "model/layers/4/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
212
- "model/layers/4/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
213
- "model/layers/4/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
214
- "model/layers/4/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
215
- "model/layers/5/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
216
- "model/layers/5/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
217
- "model/layers/5/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
218
- "model/layers/5/mlp/up_proj/kernel": "flax_model-00002-of-00003.msgpack",
219
- "model/layers/5/post_attention_layernorm/weight": "flax_model-00002-of-00003.msgpack",
220
- "model/layers/5/self_attn/k_proj/kernel": "flax_model-00002-of-00003.msgpack",
221
- "model/layers/5/self_attn/o_proj/kernel": "flax_model-00002-of-00003.msgpack",
222
- "model/layers/5/self_attn/q_proj/kernel": "flax_model-00002-of-00003.msgpack",
223
- "model/layers/5/self_attn/v_proj/kernel": "flax_model-00002-of-00003.msgpack",
224
- "model/layers/6/input_layernorm/weight": "flax_model-00002-of-00003.msgpack",
225
- "model/layers/6/mlp/down_proj/kernel": "flax_model-00002-of-00003.msgpack",
226
- "model/layers/6/mlp/gate_proj/kernel": "flax_model-00002-of-00003.msgpack",
227
- "model/layers/6/mlp/up_proj/kernel": "flax_model-00003-of-00003.msgpack",
228
- "model/layers/6/post_attention_layernorm/weight": "flax_model-00003-of-00003.msgpack",
229
- "model/layers/6/self_attn/k_proj/kernel": "flax_model-00003-of-00003.msgpack",
230
- "model/layers/6/self_attn/o_proj/kernel": "flax_model-00003-of-00003.msgpack",
231
- "model/layers/6/self_attn/q_proj/kernel": "flax_model-00003-of-00003.msgpack",
232
- "model/layers/6/self_attn/v_proj/kernel": "flax_model-00003-of-00003.msgpack",
233
- "model/layers/7/input_layernorm/weight": "flax_model-00003-of-00003.msgpack",
234
- "model/layers/7/mlp/down_proj/kernel": "flax_model-00003-of-00003.msgpack",
235
- "model/layers/7/mlp/gate_proj/kernel": "flax_model-00003-of-00003.msgpack",
236
- "model/layers/7/mlp/up_proj/kernel": "flax_model-00003-of-00003.msgpack",
237
- "model/layers/7/post_attention_layernorm/weight": "flax_model-00003-of-00003.msgpack",
238
- "model/layers/7/self_attn/k_proj/kernel": "flax_model-00003-of-00003.msgpack",
239
- "model/layers/7/self_attn/o_proj/kernel": "flax_model-00003-of-00003.msgpack",
240
- "model/layers/7/self_attn/q_proj/kernel": "flax_model-00003-of-00003.msgpack",
241
- "model/layers/7/self_attn/v_proj/kernel": "flax_model-00003-of-00003.msgpack",
242
- "model/layers/8/input_layernorm/weight": "flax_model-00003-of-00003.msgpack",
243
- "model/layers/8/mlp/down_proj/kernel": "flax_model-00003-of-00003.msgpack",
244
- "model/layers/8/mlp/gate_proj/kernel": "flax_model-00003-of-00003.msgpack",
245
- "model/layers/8/mlp/up_proj/kernel": "flax_model-00003-of-00003.msgpack",
246
- "model/layers/8/post_attention_layernorm/weight": "flax_model-00003-of-00003.msgpack",
247
- "model/layers/8/self_attn/k_proj/kernel": "flax_model-00003-of-00003.msgpack",
248
- "model/layers/8/self_attn/o_proj/kernel": "flax_model-00003-of-00003.msgpack",
249
- "model/layers/8/self_attn/q_proj/kernel": "flax_model-00003-of-00003.msgpack",
250
- "model/layers/8/self_attn/v_proj/kernel": "flax_model-00003-of-00003.msgpack",
251
- "model/layers/9/input_layernorm/weight": "flax_model-00003-of-00003.msgpack",
252
- "model/layers/9/mlp/down_proj/kernel": "flax_model-00003-of-00003.msgpack",
253
- "model/layers/9/mlp/gate_proj/kernel": "flax_model-00003-of-00003.msgpack",
254
- "model/layers/9/mlp/up_proj/kernel": "flax_model-00003-of-00003.msgpack",
255
- "model/layers/9/post_attention_layernorm/weight": "flax_model-00003-of-00003.msgpack",
256
- "model/layers/9/self_attn/k_proj/kernel": "flax_model-00003-of-00003.msgpack",
257
- "model/layers/9/self_attn/o_proj/kernel": "flax_model-00003-of-00003.msgpack",
258
- "model/layers/9/self_attn/q_proj/kernel": "flax_model-00003-of-00003.msgpack",
259
- "model/layers/9/self_attn/v_proj/kernel": "flax_model-00003-of-00003.msgpack",
260
- "model/norm/weight": "flax_model-00003-of-00003.msgpack"
261
- }
262
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "max_length": 2048,
10
+ "transformers_version": "4.46.0.dev0"
11
+ }
flax_model-00001-of-00003.msgpack → model-00001-of-00003.safetensors RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f541b4f4a5ae76c27a68f4e83235fa93a06c4dc7ee3ca0ce1b229745990d519d
3
- size 4945495141
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aaf0d2d9acfaea34c863147685c9cf783ec1f830d7d9eab29e564a56a62041d
3
+ size 4901397232
flax_model-00002-of-00003.msgpack → model-00002-of-00003.safetensors RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:54a537292d5353edd2f0456d1c14967c6ae5f5dfa4607ef8f0f3f592c6063e3a
3
- size 4932801497
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:489398be1c2a1221de417815f98b3682de255748bee2f38ece6c9ca8ecf28c65
3
+ size 4932808968
flax_model-00003-of-00003.msgpack → model-00003-of-00003.safetensors RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:af95ea3fabc7cceac0f497a3d3e070eaefee312cabbd2151b847a43597a4f644
3
- size 1409386031
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b32106a41daab0866a82e8338519582c221df8f4f3f8c992fe8c968445a315ae
3
+ size 3023408856
model.safetensors.index.json ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 12857585664
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.expand_embed_tokens.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
29
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
30
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
32
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
34
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
35
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
117
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
126
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00003.safetensors",
127
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
128
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
130
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
131
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
136
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
137
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
138
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
139
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
140
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
141
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
142
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
143
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
149
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
150
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
151
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
152
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
199
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
200
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
201
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
202
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
203
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
204
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
205
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
206
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
207
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
208
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
209
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
210
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
211
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
212
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
213
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
214
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
215
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
244
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
245
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
246
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
247
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
248
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
253
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
254
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
255
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
256
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
257
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
258
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
259
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
260
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
261
+ "model.norm.weight": "model-00003-of-00003.safetensors"
262
+ }
263
+ }
modelling_flax_tpu_llama.py ADDED
@@ -0,0 +1,1112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Meta AI, EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """Flax LLaMA model."""
21
+
22
+ import math
23
+ from functools import partial
24
+ from typing import Optional, Tuple
25
+
26
+ import flax.linen as nn
27
+ import jax
28
+ import jax.numpy as jnp
29
+ import numpy as np
30
+ from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
31
+ from flax.linen import combine_masks, make_causal_mask
32
+ from flax.linen.attention import dot_product_attention_weights
33
+ from flax.linen import partitioning as nn_partitioning
34
+ from flax.traverse_util import flatten_dict, unflatten_dict
35
+ from jax import lax
36
+ from jax.experimental.pallas.ops.tpu.flash_attention import (
37
+ flash_attention as pallas_flash_attention,
38
+ )
39
+ from jax.experimental.shard_map import shard_map
40
+ from jax.sharding import PartitionSpec as P
41
+
42
+ from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
43
+ from transformers.modeling_flax_utils import (
44
+ ACT2FN,
45
+ FlaxPreTrainedModel,
46
+ append_call_sample_docstring,
47
+ )
48
+ from transformers.utils import (
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ logging,
52
+ )
53
+ from .configuration_tpu_llama import TPULlamaConfig
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+ _CONFIG_FOR_DOC = "TPULlamaConfig"
58
+ _CHECKPOINT_FOR_DOC = "afmck/testing-llama-tiny"
59
+ _REAL_CHECKPOINT_FOR_DOC = "openlm-research/open_llama_3b_v2"
60
+
61
+ LLAMA_START_DOCSTRING = r"""
62
+
63
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
64
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
65
+ etc.)
66
+
67
+ This model is also a Flax Linen
68
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
69
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
70
+
71
+ Finally, this model supports inherent JAX features such as:
72
+
73
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
74
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
75
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
76
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
77
+
78
+ Parameters:
79
+ config ([`LlamaConfig`]): Model configuration class with all the parameters of the model.
80
+ Initializing with a config file does not load the weights associated with the model, only the
81
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
82
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
83
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or
84
+ `jax.numpy.bfloat16`.
85
+
86
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
87
+ specified all the computation will be performed with the given `dtype`.
88
+
89
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
90
+ parameters.**
91
+
92
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
93
+ [`~FlaxPreTrainedModel.to_bf16`].
94
+ """
95
+
96
+ LLAMA_INPUTS_DOCSTRING = r"""
97
+ Args:
98
+ input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
99
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
100
+ it.
101
+
102
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
103
+ [`PreTrainedTokenizer.__call__`] for details.
104
+
105
+ [What are input IDs?](../glossary#input-ids)
106
+ attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
107
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
108
+
109
+ - 1 for tokens that are **not masked**,
110
+ - 0 for tokens that are **masked**.
111
+
112
+ [What are attention masks?](../glossary#attention-mask)
113
+
114
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
115
+ [`PreTrainedTokenizer.__call__`] for details.
116
+
117
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
118
+ `past_key_values`).
119
+
120
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
121
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
122
+ information on the default strategy.
123
+
124
+ - 1 indicates the head is **not masked**,
125
+ - 0 indicates the head is **masked**.
126
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
127
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
128
+ config.n_positions - 1]`.
129
+
130
+ [What are position IDs?](../glossary#position-ids)
131
+ past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
132
+ Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
133
+ auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
134
+ output_attentions (`bool`, *optional*):
135
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
136
+ tensors for more detail.
137
+ output_hidden_states (`bool`, *optional*):
138
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
139
+ more detail.
140
+ return_dict (`bool`, *optional*):
141
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
142
+ """
143
+
144
+ remat = nn_partitioning.remat
145
+
146
+ # adapted from modeling_rope_utils
147
+ def _compute_default_rope_parameters(
148
+ config=None,
149
+ seq_len: Optional[int] = None,
150
+ **rope_kwargs,
151
+ ):
152
+ if config is not None and len(rope_kwargs) > 0:
153
+ raise ValueError(
154
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
155
+ f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
156
+ )
157
+ if len(rope_kwargs) > 0:
158
+ base = rope_kwargs["base"]
159
+ dim = rope_kwargs["dim"]
160
+ elif config is not None:
161
+ base = config.rope_theta
162
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
163
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
164
+ dim = int(head_dim * partial_rotary_factor)
165
+
166
+ attention_factor = 1.0 # Unused in this type of RoPE
167
+
168
+ # Compute the inverse frequencies
169
+ inv_freq = 1.0 / (base ** (jnp.arange(0, dim, 2, dtype=jnp.int32).astype(jnp.float32) / dim))
170
+ return inv_freq, attention_factor
171
+
172
+
173
+ def _compute_longrope_parameters(
174
+ config, seq_len: Optional[int] = None, **rope_kwargs
175
+ ):
176
+ # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
177
+ # No need to keep BC with longrope, unreleased when this new pattern was created.
178
+ if len(rope_kwargs) > 0:
179
+ raise ValueError(
180
+ "Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
181
+ f"{rope_kwargs}"
182
+ )
183
+
184
+ base = config.rope_theta
185
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
186
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
187
+ dim = int(head_dim * partial_rotary_factor)
188
+ long_factor = config.rope_scaling["long_factor"]
189
+ short_factor = config.rope_scaling["short_factor"]
190
+ factor = config.rope_scaling.get("factor")
191
+ attention_factor = config.rope_scaling.get("attention_factor")
192
+
193
+ # NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
194
+ # `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
195
+ # values to compute the default attention scaling factor, instead of using `factor`.
196
+ if hasattr(config, "original_max_position_embeddings"):
197
+ if seq_len and seq_len < config.original_max_position_embeddings:
198
+ expanded_max_position_embeddings = config.original_max_position_embeddings
199
+ else:
200
+ expanded_max_position_embeddings = config.max_position_embeddings
201
+ max_position_embeddings = config.original_max_position_embeddings
202
+ factor = expanded_max_position_embeddings / max_position_embeddings
203
+ else:
204
+ max_position_embeddings = config.max_position_embeddings
205
+ expanded_max_position_embeddings = max_position_embeddings * factor
206
+
207
+ # Sets the attention factor as suggested in the paper
208
+ if attention_factor is None:
209
+ if factor <= 1.0:
210
+ attention_factor = 1.0
211
+ else:
212
+ attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))
213
+
214
+ # Compute the inverse frequencies -- scaled based on the target sequence length
215
+ if expanded_max_position_embeddings > max_position_embeddings:
216
+ ext_factors = jnp.array(long_factor, dtype=jnp.float32)
217
+ else:
218
+ ext_factors = jnp.array(short_factor, dtype=jnp.float32)
219
+ inv_freq_shape = jnp.arange(0, dim, 2, dtype=jnp.int64).astype(jnp.float32) / dim
220
+ inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)
221
+
222
+ return inv_freq, attention_factor
223
+
224
+
225
+ def _compute_llama3_parameters(config, seq_len: Optional[int] = None, **rope_kwargs):
226
+ # Gets the default RoPE parameters
227
+ inv_freq, attention_factor = _compute_default_rope_parameters(config, seq_len, **rope_kwargs)
228
+
229
+ factor = config.rope_scaling["factor"] # `8` in the original implementation
230
+ low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation
231
+ high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation
232
+ old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation
233
+
234
+ low_freq_wavelen = old_context_len / low_freq_factor
235
+ high_freq_wavelen = old_context_len / high_freq_factor
236
+
237
+ wavelen = 2 * math.pi / inv_freq
238
+ # wavelen < high_freq_wavelen: do nothing
239
+ # wavelen > low_freq_wavelen: divide by factor
240
+ inv_freq_llama = jnp.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
241
+ # otherwise: interpolate between the two, using a smooth factor
242
+ smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
243
+ smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
244
+ is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
245
+ inv_freq_llama = jnp.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
246
+
247
+ return inv_freq_llama, attention_factor
248
+
249
+
250
+ ROPE_INIT_FUNCTIONS = {
251
+ "default": _compute_default_rope_parameters,
252
+ "llama3": _compute_llama3_parameters,
253
+ "longrope": _compute_longrope_parameters,
254
+ }
255
+
256
+
257
+ def create_sinusoidal_positions(num_pos, dim):
258
+ inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
259
+ freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
260
+
261
+ emb = np.concatenate((freqs, freqs), axis=-1)
262
+ out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1)
263
+ return jnp.array(out[:, :, :num_pos])
264
+
265
+
266
+ def rotate_half(tensor):
267
+ """Rotates half the hidden dims of the input."""
268
+ rotate_half_tensor = jnp.concatenate(
269
+ (-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]),
270
+ axis=-1,
271
+ )
272
+ return rotate_half_tensor
273
+
274
+
275
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
276
+ # TODO: get rid of swapaxes?
277
+ q = jnp.swapaxes(q, 2, 1)
278
+ k = jnp.swapaxes(k, 2, 1)
279
+
280
+ cos = jnp.expand_dims(cos, axis=unsqueeze_dim)
281
+ sin = jnp.expand_dims(sin, axis=unsqueeze_dim)
282
+
283
+ q_embed = (q * cos) + (rotate_half(q) * sin)
284
+ k_embed = (k * cos) + (rotate_half(k) * sin)
285
+
286
+ q_embed = jnp.swapaxes(q_embed, 2, 1)
287
+ k_embed = jnp.swapaxes(k_embed, 2, 1)
288
+
289
+ return q_embed, k_embed
290
+
291
+
292
+ class FlaxTPULlamaRMSNorm(nn.Module):
293
+ config: TPULlamaConfig
294
+ dtype: jnp.dtype = jnp.float32
295
+
296
+ def setup(self):
297
+ self.epsilon = self.config.rms_norm_eps
298
+ self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size)
299
+
300
+ def __call__(self, hidden_states):
301
+ variance = jnp.asarray(hidden_states, dtype=jnp.float32)
302
+ variance = jnp.power(variance, 2)
303
+ variance = variance.mean(-1, keepdims=True)
304
+ # use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt`
305
+ hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon)
306
+
307
+ return self.weight * jnp.asarray(hidden_states, dtype=self.dtype)
308
+
309
+
310
+ class FlaxTPULlamaRotaryEmbedding(nn.Module):
311
+ config: TPULlamaConfig
312
+ dtype: jnp.dtype = jnp.float32
313
+
314
+ def setup(self):
315
+ self.rope_kwargs = {}
316
+
317
+ if self.config.rope_scaling is not None:
318
+ self.rope_type = self.config.rope_scaling.get("rope_type", self.config.rope_scaling.get("type"))
319
+ else:
320
+ self.rope_type = "default"
321
+ self.max_seq_len_cached = self.config.max_position_embeddings
322
+ self.original_max_seq_len = self.config.max_position_embeddings
323
+
324
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
325
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, **self.rope_kwargs)
326
+ self.inv_freq = self.original_inv_freq = inv_freq
327
+
328
+ def __call__(self, x, position_ids):
329
+ inv_freq_expanded = jnp.tile(
330
+ self.inv_freq[None, :, None].astype(jnp.float32),
331
+ (position_ids.shape[0], 1, 1),
332
+ )
333
+ position_ids_expanded = position_ids[:, None, :].astype(jnp.float32)
334
+
335
+ freqs = jnp.swapaxes(jnp.matmul(inv_freq_expanded, position_ids_expanded), 1, 2)
336
+ emb = jnp.concatenate([freqs, freqs], axis=-1)
337
+ cos = jnp.cos(emb)
338
+ sin = jnp.sin(emb)
339
+
340
+ cos = cos * self.attention_scaling
341
+ sin = sin * self.attention_scaling
342
+
343
+ return cos.astype(x.dtype), sin.astype(x.dtype)
344
+
345
+
346
+ class FlaxTPULlamaAttention(nn.Module):
347
+ config: TPULlamaConfig
348
+ dtype: jnp.dtype = jnp.float32
349
+ causal: bool = True
350
+ is_cross_attention: bool = False
351
+
352
+ def setup(self):
353
+ config = self.config
354
+ self.embed_dim = config.hidden_size
355
+ self.num_heads = config.num_attention_heads
356
+ self.head_dim = self.embed_dim // self.num_heads
357
+ self.num_key_value_heads = config.num_key_value_heads
358
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
359
+ self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
360
+
361
+ dense = partial(
362
+ nn.Dense,
363
+ use_bias=config.attention_bias,
364
+ dtype=self.dtype,
365
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
366
+ )
367
+
368
+ self.q_proj = dense(self.num_heads * self.head_dim)
369
+ self.k_proj = dense(self.num_key_value_heads * self.head_dim)
370
+ self.v_proj = dense(self.num_key_value_heads * self.head_dim)
371
+ self.o_proj = dense(self.embed_dim)
372
+ self.causal_mask = make_causal_mask(
373
+ jnp.ones(
374
+ (1, getattr(config, "max_length", config.max_position_embeddings)),
375
+ dtype="bool",
376
+ ),
377
+ dtype="bool",
378
+ )
379
+ self.rotary_emb = FlaxTPULlamaRotaryEmbedding(config, dtype=self.dtype)
380
+
381
+ def _split_heads(self, hidden_states, num_heads):
382
+ return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
383
+
384
+ def _merge_heads(self, hidden_states):
385
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
386
+
387
+ @nn.compact
388
+ # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache
389
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
390
+ """
391
+ This function takes projected key, value states from a single input token and concatenates the states to cached
392
+ states from previous steps. This function is slighly adapted from the official Flax repository:
393
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
394
+ """
395
+ # detect if we're initializing by absence of existing cache data.
396
+ is_initialized = self.has_variable("cache", "cached_key")
397
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
398
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
399
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
400
+
401
+ if is_initialized:
402
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
403
+ # update key, value caches with our new 1d spatial slices
404
+ cur_index = cache_index.value
405
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
406
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
407
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
408
+ cached_key.value = key
409
+ cached_value.value = value
410
+ num_updated_cache_vectors = query.shape[1]
411
+ cache_index.value = cache_index.value + num_updated_cache_vectors
412
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
413
+ pad_mask = jnp.broadcast_to(
414
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
415
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
416
+ )
417
+ attention_mask = combine_masks(pad_mask, attention_mask)
418
+ return key, value, attention_mask
419
+
420
+ def __call__(
421
+ self,
422
+ hidden_states,
423
+ attention_mask,
424
+ position_ids,
425
+ deterministic: bool = True,
426
+ init_cache: bool = False,
427
+ output_attentions: bool = False,
428
+ ):
429
+ raw_query = self.q_proj(hidden_states)
430
+ raw_key = self.k_proj(hidden_states)
431
+ raw_value = self.v_proj(hidden_states)
432
+
433
+ query = self._split_heads(raw_query, self.num_heads)
434
+ key = self._split_heads(raw_key, self.num_key_value_heads)
435
+ value = self._split_heads(raw_value, self.num_key_value_heads)
436
+
437
+ cos, sin = self.rotary_emb(value, position_ids)
438
+ query, key = apply_rotary_pos_emb(query, key, cos, sin)
439
+
440
+ query_length, key_length = query.shape[1], key.shape[1]
441
+
442
+ if self.has_variable("cache", "cached_key"):
443
+ mask_shift = self.variables["cache"]["cache_index"]
444
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
445
+ causal_mask = lax.dynamic_slice(
446
+ self.causal_mask,
447
+ (0, 0, mask_shift, 0),
448
+ (1, 1, query_length, max_decoder_length),
449
+ )
450
+ else:
451
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
452
+
453
+ batch_size = hidden_states.shape[0]
454
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
455
+
456
+ if attention_mask.ndim == 2:
457
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
458
+ else:
459
+ assert attention_mask.ndim == 4
460
+
461
+ attention_mask = jnp.broadcast_to(attention_mask, causal_mask.shape)
462
+ attention_mask = combine_masks(attention_mask, causal_mask)
463
+
464
+ dropout_rng = None
465
+ if not deterministic and self.config.attention_dropout > 0.0:
466
+ dropout_rng = self.make_rng("dropout")
467
+
468
+ # During fast autoregressive decoding, we feed one position at a time,
469
+ # and cache the keys and values step by step.
470
+ if self.has_variable("cache", "cached_key") or init_cache:
471
+ key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
472
+
473
+ key = jnp.repeat(key, self.num_key_value_groups, axis=2)
474
+ value = jnp.repeat(value, self.num_key_value_groups, axis=2)
475
+
476
+ # transform boolean mask into float mask
477
+ attention_bias = lax.select(
478
+ attention_mask > 0,
479
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
480
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
481
+ )
482
+
483
+ # usual dot product attention
484
+ attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
485
+ attn_weights = dot_product_attention_weights(
486
+ query,
487
+ key,
488
+ bias=attention_bias,
489
+ dropout_rng=dropout_rng,
490
+ dropout_rate=self.config.attention_dropout,
491
+ deterministic=deterministic,
492
+ dtype=attention_dtype,
493
+ )
494
+
495
+ if self.attention_softmax_in_fp32:
496
+ attn_weights = attn_weights.astype(self.dtype)
497
+
498
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
499
+ attn_output = self._merge_heads(attn_output)
500
+ attn_output = self.o_proj(attn_output)
501
+
502
+ outputs = (attn_output, (raw_query, raw_key, raw_value)) if output_attentions else (attn_output,)
503
+ return outputs
504
+
505
+
506
+ class FlaxTPULlamaFlashAttention(FlaxTPULlamaAttention):
507
+ def setup(self):
508
+ super().setup()
509
+
510
+ if self.num_heads % len(jax.devices()) != 0:
511
+ # TODO: warn or pad attention heads or neither or both?
512
+ shard_across_model = False
513
+ else:
514
+ shard_across_model = True
515
+
516
+ model_partition = "model" if shard_across_model else None
517
+ data_partition = "data"
518
+
519
+ self.flash_attn_fn = shard_map(
520
+ partial(
521
+ pallas_flash_attention,
522
+ sm_scale=1 / math.sqrt(self.head_dim),
523
+ causal=True,
524
+ ),
525
+ mesh=getattr(self.config, "mesh"),
526
+ in_specs=(
527
+ # bnlh
528
+ P(data_partition, model_partition, None, None),
529
+ P(data_partition, model_partition, None, None),
530
+ P(data_partition, model_partition, None, None),
531
+ # P(),
532
+ ),
533
+ # bnlh
534
+ out_specs=P(data_partition, model_partition, None, None),
535
+ check_rep=False,
536
+ )
537
+
538
+ def __call__(
539
+ self,
540
+ hidden_states,
541
+ attention_mask,
542
+ position_ids,
543
+ deterministic: bool = True,
544
+ init_cache: bool = False,
545
+ output_attentions: bool = False,
546
+ ):
547
+ raw_query = self.q_proj(hidden_states)
548
+ raw_key = self.k_proj(hidden_states)
549
+ raw_value = self.v_proj(hidden_states)
550
+
551
+ query = self._split_heads(raw_query, self.num_heads)
552
+ key = self._split_heads(raw_key, self.num_key_value_heads)
553
+ value = self._split_heads(raw_value, self.num_key_value_heads)
554
+
555
+ cos, sin = self.rotary_emb(value, position_ids)
556
+ query, key = apply_rotary_pos_emb(query, key, cos, sin)
557
+
558
+ query_length, key_length = query.shape[1], key.shape[1]
559
+
560
+ if self.has_variable("cache", "cached_key"):
561
+ mask_shift = self.variables["cache"]["cache_index"]
562
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
563
+ causal_mask = lax.dynamic_slice(
564
+ self.causal_mask,
565
+ (0, 0, mask_shift, 0),
566
+ (1, 1, query_length, max_decoder_length),
567
+ )
568
+ else:
569
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
570
+
571
+ batch_size = hidden_states.shape[0]
572
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
573
+
574
+ if attention_mask.ndim == 2:
575
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
576
+ else:
577
+ assert attention_mask.ndim == 4
578
+
579
+ attention_mask = jnp.broadcast_to(attention_mask, causal_mask.shape)
580
+ attention_mask = combine_masks(attention_mask, causal_mask)
581
+
582
+ # During fast autoregressive decoding, we feed one position at a time,
583
+ # and cache the keys and values step by step.
584
+ if self.has_variable("cache", "cached_key") or init_cache:
585
+ key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
586
+
587
+ key = jnp.repeat(key, self.num_key_value_groups, axis=2)
588
+ value = jnp.repeat(value, self.num_key_value_groups, axis=2)
589
+
590
+ # transform boolean mask into float mask
591
+ # attention_bias = lax.select(
592
+ # attention_mask > 0,
593
+ # jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
594
+ # jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(
595
+ # self.dtype
596
+ # ),
597
+ # )
598
+
599
+ query = jnp.swapaxes(query, 1, 2)
600
+ key = jnp.swapaxes(key, 1, 2)
601
+ value = jnp.swapaxes(value, 1, 2)
602
+
603
+ # TODO: revisit attention_bias when implementing packing
604
+ # attention_bias = jnp.broadcast_to(
605
+ # attention_bias, (batch_size, self.num_heads, query_length, key_length)
606
+ # )
607
+
608
+ # flash attn needs fp32
609
+ query = query.astype(jnp.float32)
610
+ key = key.astype(jnp.float32)
611
+ value = value.astype(jnp.float32)
612
+
613
+ # usual dot product attention
614
+ attn_output = self.flash_attn_fn(
615
+ query,
616
+ key,
617
+ value,
618
+ ).astype(hidden_states.dtype)
619
+ attn_output = jnp.swapaxes(attn_output, 1, 2)
620
+ attn_output = self._merge_heads(attn_output)
621
+ attn_output = self.o_proj(attn_output)
622
+
623
+ outputs = (attn_output, (raw_query, raw_key, raw_value)) if output_attentions else (attn_output,)
624
+ return outputs
625
+
626
+
627
+ class FlaxTPULlamaMLP(nn.Module):
628
+ config: TPULlamaConfig
629
+ dtype: jnp.dtype = jnp.float32
630
+
631
+ def setup(self):
632
+ embed_dim = self.config.hidden_size
633
+ inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim
634
+
635
+ kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
636
+ self.act = ACT2FN[self.config.hidden_act]
637
+
638
+ self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
639
+ self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
640
+ self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
641
+
642
+ def __call__(self, hidden_states):
643
+ up_proj_states = self.up_proj(hidden_states)
644
+ gate_states = self.act(self.gate_proj(hidden_states))
645
+
646
+ hidden_states = self.down_proj(up_proj_states * gate_states)
647
+ return hidden_states
648
+
649
+
650
+ LLAMA_ATTENTION_CLASSES = {
651
+ "eager": FlaxTPULlamaAttention,
652
+ "pallas_flash_attention": FlaxTPULlamaFlashAttention,
653
+ }
654
+
655
+
656
+ class FlaxTPULlamaDecoderLayer(nn.Module):
657
+ config: TPULlamaConfig
658
+ dtype: jnp.dtype = jnp.float32
659
+
660
+ def setup(self):
661
+ self.input_layernorm = FlaxTPULlamaRMSNorm(self.config, dtype=self.dtype)
662
+ self.self_attn = LLAMA_ATTENTION_CLASSES[self.config._attn_implementation](self.config, dtype=self.dtype)
663
+ self.post_attention_layernorm = FlaxTPULlamaRMSNorm(self.config, dtype=self.dtype)
664
+ self.mlp = FlaxTPULlamaMLP(self.config, dtype=self.dtype)
665
+
666
+ def __call__(
667
+ self,
668
+ hidden_states,
669
+ attention_mask=None,
670
+ position_ids=None,
671
+ deterministic: bool = True,
672
+ init_cache: bool = False,
673
+ output_attentions: bool = False,
674
+ ):
675
+ hidden_states = jax.lax.with_sharding_constraint(
676
+ hidden_states, jax.sharding.NamedSharding(getattr(self.config, "mesh"), P("data", None, "model"))
677
+ )
678
+ residual = hidden_states
679
+ hidden_states = self.input_layernorm(hidden_states)
680
+ outputs = self.self_attn(
681
+ hidden_states,
682
+ attention_mask=attention_mask,
683
+ position_ids=position_ids,
684
+ deterministic=deterministic,
685
+ init_cache=init_cache,
686
+ output_attentions=output_attentions,
687
+ )
688
+ # residual connection
689
+ attn_output = outputs[0]
690
+ hidden_states = residual + attn_output
691
+
692
+ residual = hidden_states
693
+ hidden_states = self.post_attention_layernorm(hidden_states)
694
+
695
+ hidden_states = jax.lax.with_sharding_constraint(
696
+ hidden_states, jax.sharding.NamedSharding(getattr(self.config, "mesh"), P("data", None, "model"))
697
+ )
698
+
699
+ hidden_states = self.mlp(hidden_states)
700
+ # residual connection
701
+ hidden_states = residual + hidden_states
702
+
703
+ return (hidden_states,) + outputs[1:]
704
+
705
+
706
+ # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Llama, GPT_NEO->LLAMA, transformer->model
707
+ class FlaxTPULlamaPreTrainedModel(FlaxPreTrainedModel):
708
+ """
709
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
710
+ models.
711
+ """
712
+
713
+ config_class = TPULlamaConfig
714
+ base_model_prefix = "model"
715
+ module_class: nn.Module = None
716
+
717
+ def __init__(
718
+ self,
719
+ config: TPULlamaConfig,
720
+ input_shape: Tuple = (1, 1),
721
+ seed: int = 0,
722
+ dtype: jnp.dtype = jnp.float32,
723
+ _do_init: bool = True,
724
+ gradient_checkpointing: bool = False,
725
+ **kwargs,
726
+ ):
727
+ module = self.module_class(
728
+ config=config,
729
+ dtype=dtype,
730
+ gradient_checkpointing=gradient_checkpointing,
731
+ **kwargs
732
+ )
733
+ super().__init__(
734
+ config,
735
+ module,
736
+ input_shape=input_shape,
737
+ seed=seed,
738
+ dtype=dtype,
739
+ _do_init=_do_init,
740
+ )
741
+
742
+ def enable_gradient_checkpointing(self):
743
+ self._module = self.module_class(
744
+ config=self.config,
745
+ dtype=self.dtype,
746
+ gradient_checkpointing=True,
747
+ )
748
+
749
+ @classmethod
750
+ def can_generate(cls) -> bool:
751
+ # disable generation, handled separately
752
+ # this is convenient since GenerationConfig.from_model_config(config) needs a pickleable config
753
+ return False
754
+
755
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
756
+ # init input tensors
757
+ input_ids = jnp.zeros(input_shape, dtype="i4")
758
+ attention_mask = jnp.ones_like(input_ids)
759
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
760
+ params_rng, dropout_rng = jax.random.split(rng)
761
+ rngs = {"params": params_rng, "dropout": dropout_rng}
762
+
763
+ random_params = self.module.init(rngs, input_ids, None, attention_mask, position_ids, return_dict=False)[
764
+ "params"
765
+ ]
766
+
767
+ if params is not None:
768
+ random_params = flatten_dict(unfreeze(random_params))
769
+ params = flatten_dict(unfreeze(params))
770
+ for missing_key in self._missing_keys:
771
+ params[missing_key] = random_params[missing_key]
772
+ self._missing_keys = set()
773
+ return freeze(unflatten_dict(params))
774
+ else:
775
+ return random_params
776
+
777
+ def init_cache(self, batch_size, max_length):
778
+ r"""
779
+ Args:
780
+ batch_size (`int`):
781
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
782
+ max_length (`int`):
783
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
784
+ cache.
785
+ """
786
+ # init input variables to retrieve cache
787
+ input_ids = jnp.ones((batch_size, max_length))
788
+ attention_mask = jnp.ones_like(input_ids)
789
+ position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
790
+
791
+ init_variables = self.module.init(
792
+ jax.random.PRNGKey(0),
793
+ input_ids,
794
+ None,
795
+ attention_mask,
796
+ position_ids,
797
+ return_dict=False,
798
+ init_cache=True,
799
+ )
800
+ return unfreeze(init_variables["cache"])
801
+
802
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
803
+ def __call__(
804
+ self,
805
+ input_ids,
806
+ inputs_embeds=None,
807
+ attention_mask=None,
808
+ position_ids=None,
809
+ params: dict = None,
810
+ past_key_values: dict = None,
811
+ dropout_rng: jax.random.PRNGKey = None,
812
+ train: bool = False,
813
+ output_attentions: Optional[bool] = None,
814
+ output_hidden_states: Optional[bool] = None,
815
+ return_dict: Optional[bool] = None,
816
+ ):
817
+ if (input_ids is None) == (inputs_embeds is None):
818
+ raise ValueError("Need to provide either input_ids or inputs_embeds (and not both)")
819
+
820
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
821
+ output_hidden_states = (
822
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
823
+ )
824
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
825
+
826
+ if input_ids is not None:
827
+ batch_size, sequence_length = input_ids.shape
828
+ else:
829
+ batch_size, sequence_length, _ = inputs_embeds.shape
830
+
831
+ if position_ids is None:
832
+ if past_key_values is not None:
833
+ raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
834
+
835
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
836
+
837
+ if attention_mask is None:
838
+ attention_mask = jnp.ones((batch_size, sequence_length))
839
+
840
+ # Handle any PRNG if needed
841
+ rngs = {}
842
+ if dropout_rng is not None:
843
+ rngs["dropout"] = dropout_rng
844
+
845
+ inputs = {"params": params or self.params}
846
+
847
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxTPULlamaAttention module
848
+ if past_key_values:
849
+ inputs["cache"] = past_key_values
850
+ mutable = ["cache"]
851
+ else:
852
+ mutable = False
853
+
854
+ outputs = self.module.apply(
855
+ inputs,
856
+ jnp.array(input_ids, dtype="i4") if input_ids is not None else None,
857
+ inputs_embeds if inputs_embeds is not None else None,
858
+ jnp.array(attention_mask, dtype="i4"),
859
+ jnp.array(position_ids, dtype="i4"),
860
+ not train,
861
+ False,
862
+ output_attentions,
863
+ output_hidden_states,
864
+ return_dict,
865
+ rngs=rngs,
866
+ mutable=mutable,
867
+ )
868
+
869
+ # add updated cache to model output
870
+ if past_key_values is not None and return_dict:
871
+ outputs, past_key_values = outputs
872
+ outputs["past_key_values"] = unfreeze(past_key_values["cache"])
873
+ return outputs
874
+ elif past_key_values is not None and not return_dict:
875
+ outputs, past_key_values = outputs
876
+ outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
877
+
878
+ return outputs
879
+
880
+
881
+ class FlaxTPULlamaLayerCollection(nn.Module):
882
+ config: TPULlamaConfig
883
+ dtype: jnp.dtype = jnp.float32
884
+ gradient_checkpointing: bool = False
885
+
886
+ def setup(self):
887
+ if self.gradient_checkpointing:
888
+ FlaxTPULlamaDecoderCheckpointLayer = remat(FlaxTPULlamaDecoderLayer, static_argnums=(3, 4, 5))
889
+ self.blocks = [
890
+ FlaxTPULlamaDecoderCheckpointLayer(self.config, dtype=self.dtype, name=str(i))
891
+ for i in range(self.config.num_hidden_layers)
892
+ ]
893
+ else:
894
+ self.blocks = [
895
+ FlaxTPULlamaDecoderLayer(self.config, dtype=self.dtype, name=str(i))
896
+ for i in range(self.config.num_hidden_layers)
897
+ ]
898
+
899
+ def __call__(
900
+ self,
901
+ hidden_states,
902
+ attention_mask=None,
903
+ position_ids=None,
904
+ deterministic: bool = True,
905
+ init_cache: bool = False,
906
+ output_attentions: bool = False,
907
+ output_hidden_states: bool = False,
908
+ return_dict: bool = False,
909
+ ):
910
+ all_attentions = () if output_attentions else None
911
+ all_hidden_states = () if output_hidden_states else None
912
+
913
+ for block in self.blocks:
914
+ if output_hidden_states:
915
+ all_hidden_states += (hidden_states,)
916
+ layer_outputs = block(
917
+ hidden_states,
918
+ attention_mask,
919
+ position_ids,
920
+ deterministic,
921
+ init_cache,
922
+ output_attentions,
923
+ )
924
+ hidden_states = layer_outputs[0]
925
+
926
+ if output_attentions:
927
+ all_attentions += (layer_outputs[1],)
928
+
929
+ # this contains possible `None` values - `FlaxTPULlamaModule` will filter them out
930
+ outputs = (hidden_states, all_hidden_states, all_attentions)
931
+
932
+ return outputs
933
+
934
+
935
+ class FlaxTPULlamaModule(nn.Module):
936
+ config: TPULlamaConfig
937
+ dtype: jnp.dtype = jnp.float32
938
+ gradient_checkpointing: bool = False
939
+
940
+ def setup(self):
941
+ self.hidden_size = self.config.hidden_size
942
+ embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
943
+ self.embed_tokens = nn.Embed(
944
+ self.config.vocab_size,
945
+ self.hidden_size,
946
+ embedding_init=embedding_init,
947
+ dtype=self.dtype,
948
+ )
949
+ self.layers = FlaxTPULlamaLayerCollection(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
950
+ self.norm = FlaxTPULlamaRMSNorm(self.config, dtype=self.dtype)
951
+
952
+ def __call__(
953
+ self,
954
+ input_ids,
955
+ inputs_embeds=None,
956
+ attention_mask=None,
957
+ position_ids=None,
958
+ deterministic=True,
959
+ init_cache: bool = False,
960
+ output_attentions: bool = False,
961
+ output_hidden_states: bool = False,
962
+ return_dict: bool = True,
963
+ ):
964
+ if inputs_embeds is None:
965
+ inputs_embeds = self.embed_tokens(input_ids.astype("i4"))
966
+
967
+ outputs = self.layers(
968
+ inputs_embeds,
969
+ position_ids=position_ids,
970
+ attention_mask=attention_mask,
971
+ deterministic=deterministic,
972
+ init_cache=init_cache,
973
+ output_attentions=output_attentions,
974
+ output_hidden_states=output_hidden_states,
975
+ return_dict=return_dict,
976
+ )
977
+
978
+ hidden_states = outputs[0]
979
+ hidden_states = self.norm(hidden_states)
980
+
981
+ if output_hidden_states:
982
+ all_hidden_states = outputs[1] + (hidden_states,)
983
+ outputs = (hidden_states, all_hidden_states) + outputs[2:]
984
+ else:
985
+ outputs = (hidden_states,) + outputs[1:]
986
+
987
+ if not return_dict:
988
+ return tuple(v for v in outputs if v is not None)
989
+
990
+ return FlaxBaseModelOutput(
991
+ last_hidden_state=hidden_states,
992
+ hidden_states=outputs[1],
993
+ attentions=outputs[-1],
994
+ )
995
+
996
+
997
+ @add_start_docstrings(
998
+ "The bare Llama Model transformer outputting raw hidden-states without any specific head on top.",
999
+ LLAMA_START_DOCSTRING,
1000
+ )
1001
+ class FlaxTPULlamaModel(FlaxTPULlamaPreTrainedModel):
1002
+ module_class = FlaxTPULlamaModule
1003
+
1004
+
1005
+ append_call_sample_docstring(
1006
+ FlaxTPULlamaModel,
1007
+ _CHECKPOINT_FOR_DOC,
1008
+ FlaxBaseModelOutput,
1009
+ _CONFIG_FOR_DOC,
1010
+ real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
1011
+ )
1012
+
1013
+
1014
+ class FlaxTPULlamaForCausalLMModule(nn.Module):
1015
+ config: TPULlamaConfig
1016
+ dtype: jnp.dtype = jnp.float32
1017
+ gradient_checkpointing: bool = False
1018
+
1019
+ def setup(self):
1020
+ self.model = FlaxTPULlamaModule(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
1021
+ self.lm_head = nn.Dense(
1022
+ self.config.vocab_size,
1023
+ use_bias=False,
1024
+ dtype=self.dtype,
1025
+ kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
1026
+ )
1027
+
1028
+ def __call__(
1029
+ self,
1030
+ input_ids,
1031
+ inputs_embeds=None,
1032
+ attention_mask=None,
1033
+ position_ids=None,
1034
+ deterministic: bool = True,
1035
+ init_cache: bool = False,
1036
+ output_attentions: bool = False,
1037
+ output_hidden_states: bool = False,
1038
+ return_dict: bool = True,
1039
+ ):
1040
+ outputs = self.model(
1041
+ input_ids,
1042
+ inputs_embeds=inputs_embeds,
1043
+ position_ids=position_ids,
1044
+ attention_mask=attention_mask,
1045
+ deterministic=deterministic,
1046
+ init_cache=init_cache,
1047
+ output_attentions=output_attentions,
1048
+ output_hidden_states=output_hidden_states,
1049
+ return_dict=return_dict,
1050
+ )
1051
+
1052
+ hidden_states = outputs[0]
1053
+ if self.config.tie_word_embeddings:
1054
+ shared_kernel = self.model.variables["params"]["embed_tokens"]["embedding"].T
1055
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
1056
+ else:
1057
+ lm_logits = self.lm_head(hidden_states)
1058
+
1059
+ if not return_dict:
1060
+ return (lm_logits,) + outputs[1:]
1061
+
1062
+ return FlaxCausalLMOutput(
1063
+ logits=lm_logits,
1064
+ hidden_states=outputs.hidden_states,
1065
+ attentions=outputs.attentions,
1066
+ )
1067
+
1068
+
1069
+ @add_start_docstrings(
1070
+ """
1071
+ The Llama Model transformer with a language modeling head (linear layer) on top.
1072
+ """,
1073
+ LLAMA_START_DOCSTRING,
1074
+ )
1075
+ # Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Llama
1076
+ class FlaxTPULlamaForCausalLM(FlaxTPULlamaPreTrainedModel):
1077
+ module_class = FlaxTPULlamaForCausalLMModule
1078
+
1079
+ def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
1080
+ # initializing the cache
1081
+ batch_size, seq_length = input_ids.shape
1082
+
1083
+ past_key_values = self.init_cache(batch_size, max_length)
1084
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
1085
+ # But since Llama uses a causal mask, those positions are masked anyways.
1086
+ # Thus we can create a single static attention_mask here, which is more efficient for compilation
1087
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
1088
+ if attention_mask is not None:
1089
+ position_ids = attention_mask.cumsum(axis=-1) - 1
1090
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
1091
+ else:
1092
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
1093
+
1094
+ return {
1095
+ "past_key_values": past_key_values,
1096
+ "attention_mask": extended_attention_mask,
1097
+ "position_ids": position_ids,
1098
+ }
1099
+
1100
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
1101
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
1102
+ model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
1103
+ return model_kwargs
1104
+
1105
+
1106
+ append_call_sample_docstring(
1107
+ FlaxTPULlamaForCausalLM,
1108
+ _CHECKPOINT_FOR_DOC,
1109
+ FlaxCausalLMOutput,
1110
+ _CONFIG_FOR_DOC,
1111
+ real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
1112
+ )
modelling_tpu_llama.py ADDED
@@ -0,0 +1,1607 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ import math
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
31
+ from transformers.generation import GenerationMixin
32
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
33
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
34
+ from transformers.modeling_outputs import (
35
+ BaseModelOutputWithPast,
36
+ CausalLMOutputWithPast,
37
+ QuestionAnsweringModelOutput,
38
+ SequenceClassifierOutputWithPast,
39
+ TokenClassifierOutput,
40
+ )
41
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
42
+ from transformers.modeling_utils import PreTrainedModel
43
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
44
+ from transformers.utils import (
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ is_flash_attn_greater_or_equal_2_10,
48
+ logging,
49
+ replace_return_docstrings,
50
+ )
51
+ from .configuration_tpu_llama import TPULlamaConfig
52
+
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+ _CONFIG_FOR_DOC = "TPULlamaConfig"
57
+
58
+
59
+ def torch_expand_input_ids(
60
+ input_ids,
61
+ expand_input_ids_dict,
62
+ maxlen,
63
+ last_n=None,
64
+ ):
65
+ expanded_input_ids = torch.zeros_like(input_ids)
66
+
67
+ for example_idx in range(len(input_ids)):
68
+ last_maxlen_ids = []
69
+
70
+ for i in range(len(input_ids[example_idx])):
71
+ last_maxlen_ids.insert(0, int(input_ids[example_idx][i] + 1))
72
+ if len(last_maxlen_ids) > maxlen:
73
+ last_maxlen_ids.pop()
74
+
75
+ if last_n is not None and i < len(input_ids[example_idx]) - last_n:
76
+ continue
77
+
78
+ if last_maxlen_ids[0] in expand_input_ids_dict[1]:
79
+ expanded_input_ids[example_idx][i] = expand_input_ids_dict[0][(last_maxlen_ids[0],)] - 1
80
+ else:
81
+ found = False
82
+ last_maxlen_up_to = len(last_maxlen_ids)
83
+
84
+ while not found and last_maxlen_up_to > 0:
85
+ try:
86
+ expanded_input_ids[example_idx][i] = expand_input_ids_dict[0][tuple(last_maxlen_ids[:last_maxlen_up_to])] - 1
87
+ found = True
88
+ except KeyError:
89
+ last_maxlen_up_to -= 1
90
+
91
+ return expanded_input_ids
92
+
93
+
94
+ class TPULlamaRMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ TPULlamaRMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+ def extra_repr(self):
111
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
112
+
113
+
114
+ ALL_LAYERNORM_LAYERS.append(TPULlamaRMSNorm)
115
+
116
+
117
+ class TPULlamaRotaryEmbedding(nn.Module):
118
+ def __init__(
119
+ self,
120
+ dim=None,
121
+ max_position_embeddings=2048,
122
+ base=10000,
123
+ device=None,
124
+ scaling_factor=1.0,
125
+ rope_type="default",
126
+ config: Optional[TPULlamaConfig] = None,
127
+ ):
128
+ super().__init__()
129
+ # TODO (joao): remove the `if` below, only used for BC
130
+ self.rope_kwargs = {}
131
+ if config is None:
132
+ logger.warning_once(
133
+ "`TPULlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
134
+ "`config` argument. All other arguments will be removed in v4.46"
135
+ )
136
+ self.rope_kwargs = {
137
+ "rope_type": rope_type,
138
+ "factor": scaling_factor,
139
+ "dim": dim,
140
+ "base": base,
141
+ "max_position_embeddings": max_position_embeddings,
142
+ }
143
+ self.rope_type = rope_type
144
+ self.max_seq_len_cached = max_position_embeddings
145
+ self.original_max_seq_len = max_position_embeddings
146
+ else:
147
+ # BC: "rope_type" was originally "type"
148
+ if config.rope_scaling is not None:
149
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
150
+ else:
151
+ self.rope_type = "default"
152
+ self.max_seq_len_cached = config.max_position_embeddings
153
+ self.original_max_seq_len = config.max_position_embeddings
154
+
155
+ self.config = config
156
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
157
+
158
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
159
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
160
+ self.original_inv_freq = self.inv_freq
161
+
162
+ def _dynamic_frequency_update(self, position_ids, device):
163
+ """
164
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
165
+ 1 - growing beyond the cached sequence length (allow scaling)
166
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
167
+ """
168
+ seq_len = torch.max(position_ids) + 1
169
+ if seq_len > self.max_seq_len_cached: # growth
170
+ inv_freq, self.attention_scaling = self.rope_init_fn(
171
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
172
+ )
173
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
174
+ self.max_seq_len_cached = seq_len
175
+
176
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
177
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
178
+ self.max_seq_len_cached = self.original_max_seq_len
179
+
180
+ @torch.no_grad()
181
+ def forward(self, x, position_ids):
182
+ if "dynamic" in self.rope_type:
183
+ self._dynamic_frequency_update(position_ids, device=x.device)
184
+
185
+ # Core RoPE block
186
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
187
+ position_ids_expanded = position_ids[:, None, :].float()
188
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
189
+ device_type = x.device.type
190
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
191
+ with torch.autocast(device_type=device_type, enabled=False):
192
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
193
+ emb = torch.cat((freqs, freqs), dim=-1)
194
+ cos = emb.cos()
195
+ sin = emb.sin()
196
+
197
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
198
+ cos = cos * self.attention_scaling
199
+ sin = sin * self.attention_scaling
200
+
201
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
202
+
203
+
204
+ class TPULlamaLinearScalingRotaryEmbedding(TPULlamaRotaryEmbedding):
205
+ """TPULlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
206
+
207
+ def __init__(self, *args, **kwargs):
208
+ logger.warning_once(
209
+ "`TPULlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
210
+ "`TPULlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
211
+ )
212
+ kwargs["rope_type"] = "linear"
213
+ super().__init__(*args, **kwargs)
214
+
215
+
216
+ class TPULlamaDynamicNTKScalingRotaryEmbedding(TPULlamaRotaryEmbedding):
217
+ """TPULlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
218
+
219
+ def __init__(self, *args, **kwargs):
220
+ logger.warning_once(
221
+ "`TPULlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
222
+ "`TPULlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
223
+ "__init__)."
224
+ )
225
+ kwargs["rope_type"] = "dynamic"
226
+ super().__init__(*args, **kwargs)
227
+
228
+
229
+ def rotate_half(x):
230
+ """Rotates half the hidden dims of the input."""
231
+ x1 = x[..., : x.shape[-1] // 2]
232
+ x2 = x[..., x.shape[-1] // 2 :]
233
+ return torch.cat((-x2, x1), dim=-1)
234
+
235
+
236
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
237
+ """Applies Rotary Position Embedding to the query and key tensors.
238
+
239
+ Args:
240
+ q (`torch.Tensor`): The query tensor.
241
+ k (`torch.Tensor`): The key tensor.
242
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
243
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
244
+ position_ids (`torch.Tensor`, *optional*):
245
+ Deprecated and unused.
246
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
247
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
248
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
249
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
250
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
251
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
252
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
253
+ Returns:
254
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
255
+ """
256
+ cos = cos.unsqueeze(unsqueeze_dim)
257
+ sin = sin.unsqueeze(unsqueeze_dim)
258
+ q_embed = (q * cos) + (rotate_half(q) * sin)
259
+ k_embed = (k * cos) + (rotate_half(k) * sin)
260
+ return q_embed, k_embed
261
+
262
+
263
+ class TPULlamaMLP(nn.Module):
264
+ def __init__(self, config):
265
+ super().__init__()
266
+ self.config = config
267
+ self.hidden_size = config.hidden_size
268
+ self.intermediate_size = config.intermediate_size
269
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
270
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
271
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
272
+ self.act_fn = ACT2FN[config.hidden_act]
273
+
274
+ def forward(self, x):
275
+ if self.config.pretraining_tp > 1:
276
+ slice = self.intermediate_size // self.config.pretraining_tp
277
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
278
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
279
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
280
+
281
+ gate_proj = torch.cat(
282
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
283
+ )
284
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
285
+
286
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
287
+ down_proj = [
288
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
289
+ ]
290
+ down_proj = sum(down_proj)
291
+ else:
292
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
293
+
294
+ return down_proj
295
+
296
+
297
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
298
+ """
299
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
300
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
301
+ """
302
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
303
+ if n_rep == 1:
304
+ return hidden_states
305
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
306
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
307
+
308
+
309
+ class TPULlamaAttention(nn.Module):
310
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
311
+
312
+ def __init__(self, config: TPULlamaConfig, layer_idx: Optional[int] = None):
313
+ super().__init__()
314
+ self.config = config
315
+ self.layer_idx = layer_idx
316
+ if layer_idx is None:
317
+ logger.warning_once(
318
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
319
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
320
+ "when creating this class."
321
+ )
322
+
323
+ self.attention_dropout = config.attention_dropout
324
+ self.hidden_size = config.hidden_size
325
+ self.num_heads = config.num_attention_heads
326
+ self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
327
+ self.num_key_value_heads = config.num_key_value_heads
328
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
329
+ self.max_position_embeddings = config.max_position_embeddings
330
+ self.rope_theta = config.rope_theta
331
+ self.is_causal = True
332
+
333
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
334
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
335
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
336
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
337
+
338
+ # TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
339
+ self.rotary_emb = TPULlamaRotaryEmbedding(config=self.config)
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Cache] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ cache_position: Optional[torch.LongTensor] = None,
350
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
351
+ **kwargs,
352
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
353
+ bsz, q_len, _ = hidden_states.size()
354
+
355
+ if self.config.pretraining_tp > 1:
356
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
357
+ query_slices = self.q_proj.weight.split(
358
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
359
+ )
360
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
361
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
362
+
363
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
364
+ query_states = torch.cat(query_states, dim=-1)
365
+
366
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
367
+ key_states = torch.cat(key_states, dim=-1)
368
+
369
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
370
+ value_states = torch.cat(value_states, dim=-1)
371
+
372
+ else:
373
+ query_states = self.q_proj(hidden_states)
374
+ key_states = self.k_proj(hidden_states)
375
+ value_states = self.v_proj(hidden_states)
376
+
377
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
378
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
379
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
380
+
381
+ if position_embeddings is None:
382
+ logger.warning_once(
383
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
384
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
385
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
386
+ "removed and `position_embeddings` will be mandatory."
387
+ )
388
+ cos, sin = self.rotary_emb(value_states, position_ids)
389
+ else:
390
+ cos, sin = position_embeddings
391
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
392
+
393
+ if past_key_value is not None:
394
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
395
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
396
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
397
+
398
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
399
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
400
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
401
+
402
+ if attention_mask is not None: # no matter the length, we just slice it
403
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
404
+ attn_weights = attn_weights + causal_mask
405
+
406
+ # upcast attention to fp32
407
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
408
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
409
+ attn_output = torch.matmul(attn_weights, value_states)
410
+
411
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
412
+ raise ValueError(
413
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
414
+ f" {attn_output.size()}"
415
+ )
416
+
417
+ attn_output = attn_output.transpose(1, 2).contiguous()
418
+
419
+ attn_output = attn_output.reshape(bsz, q_len, -1)
420
+
421
+ if self.config.pretraining_tp > 1:
422
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
423
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
424
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
425
+ else:
426
+ attn_output = self.o_proj(attn_output)
427
+
428
+ if not output_attentions:
429
+ attn_weights = None
430
+
431
+ return attn_output, attn_weights, past_key_value
432
+
433
+
434
+ class TPULlamaFlashAttention2(TPULlamaAttention):
435
+ """
436
+ TPULlama flash attention module. This module inherits from `TPULlamaAttention` as the weights of the module stays
437
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
438
+ flash attention and deal with padding tokens in case the input contains any of them.
439
+ """
440
+
441
+ def __init__(self, *args, **kwargs):
442
+ super().__init__(*args, **kwargs)
443
+
444
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
445
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
446
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
447
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
448
+
449
+ def forward(
450
+ self,
451
+ hidden_states: torch.Tensor,
452
+ attention_mask: Optional[torch.LongTensor] = None,
453
+ position_ids: Optional[torch.LongTensor] = None,
454
+ past_key_value: Optional[Cache] = None,
455
+ output_attentions: bool = False,
456
+ use_cache: bool = False,
457
+ cache_position: Optional[torch.LongTensor] = None,
458
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
459
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
460
+ if isinstance(past_key_value, StaticCache):
461
+ raise ValueError(
462
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
463
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
464
+ )
465
+
466
+ output_attentions = False
467
+
468
+ bsz, q_len, _ = hidden_states.size()
469
+
470
+ query_states = self.q_proj(hidden_states)
471
+ key_states = self.k_proj(hidden_states)
472
+ value_states = self.v_proj(hidden_states)
473
+
474
+ # Flash attention requires the input to have the shape
475
+ # batch_size x seq_length x head_dim x hidden_dim
476
+ # therefore we just need to keep the original shape
477
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
478
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
479
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
480
+
481
+ if position_embeddings is None:
482
+ logger.warning_once(
483
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
484
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
485
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
486
+ "removed and `position_embeddings` will be mandatory."
487
+ )
488
+ cos, sin = self.rotary_emb(value_states, position_ids)
489
+ else:
490
+ cos, sin = position_embeddings
491
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
492
+
493
+ if past_key_value is not None:
494
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
495
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
496
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
497
+
498
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
499
+ # to be able to avoid many of these transpose/reshape/view.
500
+ query_states = query_states.transpose(1, 2)
501
+ key_states = key_states.transpose(1, 2)
502
+ value_states = value_states.transpose(1, 2)
503
+
504
+ dropout_rate = self.attention_dropout if self.training else 0.0
505
+
506
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
507
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
508
+ # cast them back in the correct dtype just to be sure everything works as expected.
509
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
510
+ # in fp32. (TPULlamaRMSNorm handles it correctly)
511
+
512
+ input_dtype = query_states.dtype
513
+ if input_dtype == torch.float32:
514
+ if torch.is_autocast_enabled():
515
+ target_dtype = torch.get_autocast_gpu_dtype()
516
+ # Handle the case where the model is quantized
517
+ elif hasattr(self.config, "_pre_quantization_dtype"):
518
+ target_dtype = self.config._pre_quantization_dtype
519
+ else:
520
+ target_dtype = self.q_proj.weight.dtype
521
+
522
+ logger.warning_once(
523
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
524
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
525
+ f" {target_dtype}."
526
+ )
527
+
528
+ query_states = query_states.to(target_dtype)
529
+ key_states = key_states.to(target_dtype)
530
+ value_states = value_states.to(target_dtype)
531
+
532
+ attn_output = _flash_attention_forward(
533
+ query_states,
534
+ key_states,
535
+ value_states,
536
+ attention_mask,
537
+ q_len,
538
+ position_ids=position_ids,
539
+ dropout=dropout_rate,
540
+ sliding_window=getattr(self, "sliding_window", None),
541
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
542
+ is_causal=self.is_causal,
543
+ )
544
+
545
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
546
+ attn_output = self.o_proj(attn_output)
547
+
548
+ if not output_attentions:
549
+ attn_weights = None
550
+
551
+ return attn_output, attn_weights, past_key_value
552
+
553
+
554
+ class TPULlamaSdpaAttention(TPULlamaAttention):
555
+ """
556
+ TPULlama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
557
+ `TPULlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
558
+ SDPA API.
559
+ """
560
+
561
+ # Adapted from TPULlamaAttention.forward
562
+ def forward(
563
+ self,
564
+ hidden_states: torch.Tensor,
565
+ attention_mask: Optional[torch.Tensor] = None,
566
+ position_ids: Optional[torch.LongTensor] = None,
567
+ past_key_value: Optional[Cache] = None,
568
+ output_attentions: bool = False,
569
+ use_cache: bool = False,
570
+ cache_position: Optional[torch.LongTensor] = None,
571
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
572
+ **kwargs,
573
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
574
+ if output_attentions:
575
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
576
+ logger.warning_once(
577
+ "TPULlamaModel is using TPULlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
578
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
579
+ )
580
+ return super().forward(
581
+ hidden_states=hidden_states,
582
+ attention_mask=attention_mask,
583
+ position_ids=position_ids,
584
+ past_key_value=past_key_value,
585
+ output_attentions=output_attentions,
586
+ use_cache=use_cache,
587
+ cache_position=cache_position,
588
+ position_embeddings=position_embeddings,
589
+ )
590
+
591
+ bsz, q_len, _ = hidden_states.size()
592
+
593
+ query_states = self.q_proj(hidden_states)
594
+ key_states = self.k_proj(hidden_states)
595
+ value_states = self.v_proj(hidden_states)
596
+
597
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
598
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
599
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
600
+
601
+ if position_embeddings is None:
602
+ logger.warning_once(
603
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
604
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
605
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
606
+ "removed and `position_embeddings` will be mandatory."
607
+ )
608
+ cos, sin = self.rotary_emb(value_states, position_ids)
609
+ else:
610
+ cos, sin = position_embeddings
611
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
612
+
613
+ if past_key_value is not None:
614
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
615
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
616
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
617
+
618
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
619
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
620
+
621
+ causal_mask = attention_mask
622
+ if attention_mask is not None:
623
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
624
+
625
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
626
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
627
+ if query_states.device.type == "cuda" and causal_mask is not None:
628
+ query_states = query_states.contiguous()
629
+ key_states = key_states.contiguous()
630
+ value_states = value_states.contiguous()
631
+
632
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
633
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
634
+ is_causal = True if causal_mask is None and q_len > 1 else False
635
+
636
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
637
+ query_states,
638
+ key_states,
639
+ value_states,
640
+ attn_mask=causal_mask,
641
+ dropout_p=self.attention_dropout if self.training else 0.0,
642
+ is_causal=is_causal,
643
+ )
644
+
645
+ attn_output = attn_output.transpose(1, 2).contiguous()
646
+ attn_output = attn_output.view(bsz, q_len, -1)
647
+
648
+ attn_output = self.o_proj(attn_output)
649
+
650
+ return attn_output, None, past_key_value
651
+
652
+
653
+ LLAMA_ATTENTION_CLASSES = {
654
+ "eager": TPULlamaAttention,
655
+ "flash_attention_2": TPULlamaFlashAttention2,
656
+ "sdpa": TPULlamaSdpaAttention,
657
+ }
658
+
659
+
660
+ class TPULlamaDecoderLayer(nn.Module):
661
+ def __init__(self, config: TPULlamaConfig, layer_idx: int):
662
+ super().__init__()
663
+ self.hidden_size = config.hidden_size
664
+
665
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
666
+
667
+ self.mlp = TPULlamaMLP(config)
668
+ self.input_layernorm = TPULlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
669
+ self.post_attention_layernorm = TPULlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
670
+
671
+ def forward(
672
+ self,
673
+ hidden_states: torch.Tensor,
674
+ attention_mask: Optional[torch.Tensor] = None,
675
+ position_ids: Optional[torch.LongTensor] = None,
676
+ past_key_value: Optional[Cache] = None,
677
+ output_attentions: Optional[bool] = False,
678
+ use_cache: Optional[bool] = False,
679
+ cache_position: Optional[torch.LongTensor] = None,
680
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
681
+ **kwargs,
682
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
683
+ """
684
+ Args:
685
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
686
+ attention_mask (`torch.FloatTensor`, *optional*):
687
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
688
+ query_sequence_length, key_sequence_length)` if default attention is used.
689
+ output_attentions (`bool`, *optional*):
690
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
691
+ returned tensors for more detail.
692
+ use_cache (`bool`, *optional*):
693
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
694
+ (see `past_key_values`).
695
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
696
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
697
+ Indices depicting the position of the input sequence tokens in the sequence
698
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
699
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
700
+ with `head_dim` being the embedding dimension of each attention head.
701
+ kwargs (`dict`, *optional*):
702
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
703
+ into the model
704
+ """
705
+ residual = hidden_states
706
+
707
+ hidden_states = self.input_layernorm(hidden_states)
708
+
709
+ # Self Attention
710
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
711
+ hidden_states=hidden_states,
712
+ attention_mask=attention_mask,
713
+ position_ids=position_ids,
714
+ past_key_value=past_key_value,
715
+ output_attentions=output_attentions,
716
+ use_cache=use_cache,
717
+ cache_position=cache_position,
718
+ position_embeddings=position_embeddings,
719
+ **kwargs,
720
+ )
721
+ hidden_states = residual + hidden_states
722
+
723
+ # Fully Connected
724
+ residual = hidden_states
725
+ hidden_states = self.post_attention_layernorm(hidden_states)
726
+ hidden_states = self.mlp(hidden_states)
727
+ hidden_states = residual + hidden_states
728
+
729
+ outputs = (hidden_states,)
730
+
731
+ if output_attentions:
732
+ outputs += (self_attn_weights,)
733
+
734
+ if use_cache:
735
+ outputs += (present_key_value,)
736
+
737
+ return outputs
738
+
739
+
740
+ LLAMA_START_DOCSTRING = r"""
741
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
742
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
743
+ etc.)
744
+
745
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
746
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
747
+ and behavior.
748
+
749
+ Parameters:
750
+ config ([`TPULlamaConfig`]):
751
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
752
+ load the weights associated with the model, only the configuration. Check out the
753
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
754
+ """
755
+
756
+
757
+ @add_start_docstrings(
758
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
759
+ LLAMA_START_DOCSTRING,
760
+ )
761
+ class TPULlamaPreTrainedModel(PreTrainedModel):
762
+ config_class = TPULlamaConfig
763
+ base_model_prefix = "model"
764
+ supports_gradient_checkpointing = True
765
+ _no_split_modules = ["TPULlamaDecoderLayer"]
766
+ _skip_keys_device_placement = ["past_key_values"]
767
+ _supports_flash_attn_2 = True
768
+ _supports_sdpa = True
769
+ _supports_cache_class = True
770
+ _supports_quantized_cache = True
771
+ _supports_static_cache = True
772
+
773
+ def _init_weights(self, module):
774
+ std = self.config.initializer_range
775
+ if isinstance(module, nn.Linear):
776
+ module.weight.data.normal_(mean=0.0, std=std)
777
+ if module.bias is not None:
778
+ module.bias.data.zero_()
779
+ elif isinstance(module, nn.Embedding):
780
+ module.weight.data.normal_(mean=0.0, std=std)
781
+ if module.padding_idx is not None:
782
+ module.weight.data[module.padding_idx].zero_()
783
+
784
+
785
+ LLAMA_INPUTS_DOCSTRING = r"""
786
+ Args:
787
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
788
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
789
+ it.
790
+
791
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
792
+ [`PreTrainedTokenizer.__call__`] for details.
793
+
794
+ [What are input IDs?](../glossary#input-ids)
795
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
796
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
797
+
798
+ - 1 for tokens that are **not masked**,
799
+ - 0 for tokens that are **masked**.
800
+
801
+ [What are attention masks?](../glossary#attention-mask)
802
+
803
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
804
+ [`PreTrainedTokenizer.__call__`] for details.
805
+
806
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
807
+ `past_key_values`).
808
+
809
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
810
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
811
+ information on the default strategy.
812
+
813
+ - 1 indicates the head is **not masked**,
814
+ - 0 indicates the head is **masked**.
815
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
816
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
817
+ config.n_positions - 1]`.
818
+
819
+ [What are position IDs?](../glossary#position-ids)
820
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
821
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
822
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
823
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
824
+
825
+ Two formats are allowed:
826
+ - a [`~cache_utils.Cache`] instance, see our
827
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
828
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
829
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
830
+ cache format.
831
+
832
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
833
+ legacy cache format will be returned.
834
+
835
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
836
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
837
+ of shape `(batch_size, sequence_length)`.
838
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
839
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
840
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
841
+ model's internal embedding lookup matrix.
842
+ use_cache (`bool`, *optional*):
843
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
844
+ `past_key_values`).
845
+ output_attentions (`bool`, *optional*):
846
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
847
+ tensors for more detail.
848
+ output_hidden_states (`bool`, *optional*):
849
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
850
+ more detail.
851
+ return_dict (`bool`, *optional*):
852
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
853
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
854
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
855
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
856
+ the complete sequence length.
857
+ """
858
+
859
+
860
+ @add_start_docstrings(
861
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
862
+ LLAMA_START_DOCSTRING,
863
+ )
864
+ class TPULlamaModel(TPULlamaPreTrainedModel):
865
+ """
866
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TPULlamaDecoderLayer`]
867
+
868
+ Args:
869
+ config: TPULlamaConfig
870
+ """
871
+
872
+ def __init__(self, config: TPULlamaConfig):
873
+ super().__init__(config)
874
+ self.padding_idx = config.pad_token_id
875
+ self.vocab_size = config.vocab_size
876
+
877
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
878
+ if config.expand_input_ids:
879
+ self.expand_embed_tokens = nn.Embedding(config.expand_input_ids_vocab_size, config.hidden_size)
880
+ self.expand_input_ids_dict = (
881
+ {tuple(int(n) for n in k.split(",")) if len(k) > 0 else (): v for k, v in config.expand_input_ids_dict[0].items()},
882
+ set(int(n) for n in config.expand_input_ids_dict[1]),
883
+ )
884
+ else:
885
+ self.expand_embed_tokens = None
886
+
887
+ self.layers = nn.ModuleList(
888
+ [TPULlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
889
+ )
890
+ self.norm = TPULlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
891
+ self.rotary_emb = TPULlamaRotaryEmbedding(config=config)
892
+ self.gradient_checkpointing = False
893
+
894
+ # Initialize weights and apply final processing
895
+ self.post_init()
896
+
897
+ def get_input_embeddings(self):
898
+ return self.embed_tokens
899
+
900
+ def set_input_embeddings(self, value):
901
+ self.embed_tokens = value
902
+
903
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
904
+ def forward(
905
+ self,
906
+ input_ids: torch.LongTensor = None,
907
+ attention_mask: Optional[torch.Tensor] = None,
908
+ position_ids: Optional[torch.LongTensor] = None,
909
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
910
+ inputs_embeds: Optional[torch.FloatTensor] = None,
911
+ use_cache: Optional[bool] = None,
912
+ output_attentions: Optional[bool] = None,
913
+ output_hidden_states: Optional[bool] = None,
914
+ return_dict: Optional[bool] = None,
915
+ cache_position: Optional[torch.LongTensor] = None,
916
+ past_input_ids: Optional[torch.LongTensor] = None,
917
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
918
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
919
+ output_hidden_states = (
920
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
921
+ )
922
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
923
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
924
+
925
+ if (input_ids is None) ^ (inputs_embeds is not None):
926
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
927
+
928
+ if self.gradient_checkpointing and self.training and use_cache:
929
+ logger.warning_once(
930
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
931
+ )
932
+ use_cache = False
933
+
934
+ if inputs_embeds is None:
935
+
936
+ if self.config.expand_input_ids:
937
+ input_ids_to_expand = past_input_ids if past_input_ids is not None else input_ids
938
+
939
+ expanded_input_ids = torch_expand_input_ids(
940
+ input_ids_to_expand,
941
+ self.expand_input_ids_dict,
942
+ self.config.expand_input_ids_maxlen,
943
+ last_n=input_ids.shape[1],
944
+ )[:, -input_ids.shape[1]:]
945
+ inputs_embeds = self.embed_tokens(input_ids) + self.expand_embed_tokens(expanded_input_ids)
946
+ else:
947
+ inputs_embeds = self.embed_tokens(input_ids)
948
+
949
+ # kept for BC (non `Cache` `past_key_values` inputs)
950
+ return_legacy_cache = False
951
+ if use_cache and not isinstance(past_key_values, Cache):
952
+ return_legacy_cache = True
953
+ if past_key_values is None:
954
+ past_key_values = DynamicCache()
955
+ else:
956
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
957
+ logger.warning_once(
958
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
959
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
960
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
961
+ )
962
+
963
+ if cache_position is None:
964
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
965
+ cache_position = torch.arange(
966
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
967
+ )
968
+ if position_ids is None:
969
+ position_ids = cache_position.unsqueeze(0)
970
+
971
+ causal_mask = self._update_causal_mask(
972
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
973
+ )
974
+ hidden_states = inputs_embeds
975
+
976
+ # create position embeddings to be shared across the decoder layers
977
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
978
+
979
+ # decoder layers
980
+ all_hidden_states = () if output_hidden_states else None
981
+ all_self_attns = () if output_attentions else None
982
+ next_decoder_cache = None
983
+
984
+ for decoder_layer in self.layers:
985
+ if output_hidden_states:
986
+ all_hidden_states += (hidden_states,)
987
+
988
+ if self.gradient_checkpointing and self.training:
989
+ layer_outputs = self._gradient_checkpointing_func(
990
+ decoder_layer.__call__,
991
+ hidden_states,
992
+ causal_mask,
993
+ position_ids,
994
+ past_key_values,
995
+ output_attentions,
996
+ use_cache,
997
+ cache_position,
998
+ position_embeddings,
999
+ )
1000
+ else:
1001
+ layer_outputs = decoder_layer(
1002
+ hidden_states,
1003
+ attention_mask=causal_mask,
1004
+ position_ids=position_ids,
1005
+ past_key_value=past_key_values,
1006
+ output_attentions=output_attentions,
1007
+ use_cache=use_cache,
1008
+ cache_position=cache_position,
1009
+ position_embeddings=position_embeddings,
1010
+ )
1011
+
1012
+ hidden_states = layer_outputs[0]
1013
+
1014
+ if use_cache:
1015
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1016
+
1017
+ if output_attentions:
1018
+ all_self_attns += (layer_outputs[1],)
1019
+
1020
+ hidden_states = self.norm(hidden_states)
1021
+
1022
+ # add hidden states from the last decoder layer
1023
+ if output_hidden_states:
1024
+ all_hidden_states += (hidden_states,)
1025
+
1026
+ next_cache = next_decoder_cache if use_cache else None
1027
+ if return_legacy_cache:
1028
+ next_cache = next_cache.to_legacy_cache()
1029
+
1030
+ if not return_dict:
1031
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1032
+ return BaseModelOutputWithPast(
1033
+ last_hidden_state=hidden_states,
1034
+ past_key_values=next_cache,
1035
+ hidden_states=all_hidden_states,
1036
+ attentions=all_self_attns,
1037
+ )
1038
+
1039
+ def _update_causal_mask(
1040
+ self,
1041
+ attention_mask: torch.Tensor,
1042
+ input_tensor: torch.Tensor,
1043
+ cache_position: torch.Tensor,
1044
+ past_key_values: Cache,
1045
+ output_attentions: bool,
1046
+ ):
1047
+ if self.config._attn_implementation == "flash_attention_2":
1048
+ if attention_mask is not None and 0.0 in attention_mask:
1049
+ return attention_mask
1050
+ return None
1051
+
1052
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1053
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1054
+ # to infer the attention mask.
1055
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1056
+ using_static_cache = isinstance(past_key_values, StaticCache)
1057
+
1058
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1059
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1060
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1061
+ attention_mask,
1062
+ inputs_embeds=input_tensor,
1063
+ past_key_values_length=past_seen_tokens,
1064
+ is_training=self.training,
1065
+ ):
1066
+ return None
1067
+
1068
+ dtype, device = input_tensor.dtype, input_tensor.device
1069
+ sequence_length = input_tensor.shape[1]
1070
+ if using_static_cache:
1071
+ target_length = past_key_values.get_max_cache_shape()
1072
+ else:
1073
+ target_length = (
1074
+ attention_mask.shape[-1]
1075
+ if isinstance(attention_mask, torch.Tensor)
1076
+ else past_seen_tokens + sequence_length + 1
1077
+ )
1078
+
1079
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1080
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
1081
+ attention_mask,
1082
+ sequence_length=sequence_length,
1083
+ target_length=target_length,
1084
+ dtype=dtype,
1085
+ device=device,
1086
+ cache_position=cache_position,
1087
+ batch_size=input_tensor.shape[0],
1088
+ )
1089
+
1090
+ if (
1091
+ self.config._attn_implementation == "sdpa"
1092
+ and attention_mask is not None
1093
+ and attention_mask.device.type == "cuda"
1094
+ and not output_attentions
1095
+ ):
1096
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1097
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1098
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1099
+ min_dtype = torch.finfo(dtype).min
1100
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1101
+
1102
+ return causal_mask
1103
+
1104
+ @staticmethod
1105
+ def _prepare_4d_causal_attention_mask_with_cache_position(
1106
+ attention_mask: torch.Tensor,
1107
+ sequence_length: int,
1108
+ target_length: int,
1109
+ dtype: torch.dtype,
1110
+ device: torch.device,
1111
+ cache_position: torch.Tensor,
1112
+ batch_size: int,
1113
+ ):
1114
+ """
1115
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
1116
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
1117
+
1118
+ Args:
1119
+ attention_mask (`torch.Tensor`):
1120
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
1121
+ `(batch_size, 1, query_length, key_value_length)`.
1122
+ sequence_length (`int`):
1123
+ The sequence length being processed.
1124
+ target_length (`int`):
1125
+ The target length: when generating with static cache, the mask should be as long as the static cache,
1126
+ to account for the 0 padding, the part of the cache that is not filled yet.
1127
+ dtype (`torch.dtype`):
1128
+ The dtype to use for the 4D attention mask.
1129
+ device (`torch.device`):
1130
+ The device to plcae the 4D attention mask on.
1131
+ cache_position (`torch.Tensor`):
1132
+ Indices depicting the position of the input sequence tokens in the sequence.
1133
+ batch_size (`torch.Tensor`):
1134
+ Batch size.
1135
+ """
1136
+ if attention_mask is not None and attention_mask.dim() == 4:
1137
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
1138
+ causal_mask = attention_mask
1139
+ else:
1140
+ min_dtype = torch.finfo(dtype).min
1141
+ causal_mask = torch.full(
1142
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1143
+ )
1144
+ if sequence_length != 1:
1145
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1146
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1147
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
1148
+ if attention_mask is not None:
1149
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1150
+ mask_length = attention_mask.shape[-1]
1151
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1152
+ padding_mask = padding_mask == 0
1153
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1154
+ padding_mask, min_dtype
1155
+ )
1156
+
1157
+ return causal_mask
1158
+
1159
+
1160
+ class TPULlamaForCausalLM(TPULlamaPreTrainedModel, GenerationMixin):
1161
+ _tied_weights_keys = ["lm_head.weight"]
1162
+
1163
+ def __init__(self, config):
1164
+ super().__init__(config)
1165
+ self.model = TPULlamaModel(config)
1166
+ self.vocab_size = config.vocab_size
1167
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1168
+
1169
+ # Initialize weights and apply final processing
1170
+ self.post_init()
1171
+
1172
+ def get_input_embeddings(self):
1173
+ return self.model.embed_tokens
1174
+
1175
+ def set_input_embeddings(self, value):
1176
+ self.model.embed_tokens = value
1177
+
1178
+ def get_output_embeddings(self):
1179
+ return self.lm_head
1180
+
1181
+ def set_output_embeddings(self, new_embeddings):
1182
+ self.lm_head = new_embeddings
1183
+
1184
+ def set_decoder(self, decoder):
1185
+ self.model = decoder
1186
+
1187
+ def get_decoder(self):
1188
+ return self.model
1189
+
1190
+ def prepare_inputs_for_generation(self, input_ids, **model_kwargs):
1191
+ out = super().prepare_inputs_for_generation(input_ids, **model_kwargs)
1192
+
1193
+ if self.config.expand_input_ids:
1194
+ out["past_input_ids"] = input_ids
1195
+
1196
+ return out
1197
+
1198
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1199
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1200
+ def forward(
1201
+ self,
1202
+ input_ids: torch.LongTensor = None,
1203
+ attention_mask: Optional[torch.Tensor] = None,
1204
+ position_ids: Optional[torch.LongTensor] = None,
1205
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1206
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1207
+ labels: Optional[torch.LongTensor] = None,
1208
+ use_cache: Optional[bool] = None,
1209
+ output_attentions: Optional[bool] = None,
1210
+ output_hidden_states: Optional[bool] = None,
1211
+ return_dict: Optional[bool] = None,
1212
+ cache_position: Optional[torch.LongTensor] = None,
1213
+ num_logits_to_keep: int = 0,
1214
+ past_input_ids: Optional[torch.LongTensor] = None,
1215
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1216
+ r"""
1217
+ Args:
1218
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1219
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1220
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1221
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1222
+
1223
+ num_logits_to_keep (`int`, *optional*):
1224
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1225
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1226
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1227
+
1228
+ Returns:
1229
+
1230
+ Example:
1231
+
1232
+ ```python
1233
+ >>> from transformers import AutoTokenizer, TPULlamaForCausalLM
1234
+
1235
+ >>> model = TPULlamaForCausalLM.from_pretrained("meta-llama/TPULlama-2-7b-hf")
1236
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/TPULlama-2-7b-hf")
1237
+
1238
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1239
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1240
+
1241
+ >>> # Generate
1242
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1243
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1244
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1245
+ ```"""
1246
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1247
+ output_hidden_states = (
1248
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1249
+ )
1250
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1251
+
1252
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1253
+ outputs = self.model(
1254
+ input_ids=input_ids,
1255
+ attention_mask=attention_mask,
1256
+ position_ids=position_ids,
1257
+ past_key_values=past_key_values,
1258
+ inputs_embeds=inputs_embeds,
1259
+ use_cache=use_cache,
1260
+ output_attentions=output_attentions,
1261
+ output_hidden_states=output_hidden_states,
1262
+ return_dict=return_dict,
1263
+ cache_position=cache_position,
1264
+ past_input_ids=past_input_ids,
1265
+ )
1266
+
1267
+ hidden_states = outputs[0]
1268
+ if self.config.pretraining_tp > 1:
1269
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1270
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1271
+ logits = torch.cat(logits, dim=-1)
1272
+ else:
1273
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1274
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1275
+
1276
+ loss = None
1277
+ if labels is not None:
1278
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
1279
+ logits = logits.float()
1280
+ # Shift so that tokens < n predict n
1281
+ shift_logits = logits[..., :-1, :].contiguous()
1282
+ shift_labels = labels[..., 1:].contiguous()
1283
+ # Flatten the tokens
1284
+ loss_fct = CrossEntropyLoss()
1285
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1286
+ shift_labels = shift_labels.view(-1)
1287
+ # Enable model parallelism
1288
+ shift_labels = shift_labels.to(shift_logits.device)
1289
+ loss = loss_fct(shift_logits, shift_labels)
1290
+
1291
+ if not return_dict:
1292
+ output = (logits,) + outputs[1:]
1293
+ return (loss,) + output if loss is not None else output
1294
+
1295
+ return CausalLMOutputWithPast(
1296
+ loss=loss,
1297
+ logits=logits,
1298
+ past_key_values=outputs.past_key_values,
1299
+ hidden_states=outputs.hidden_states,
1300
+ attentions=outputs.attentions,
1301
+ )
1302
+
1303
+
1304
+ @add_start_docstrings(
1305
+ """
1306
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1307
+
1308
+ [`TPULlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1309
+ (e.g. GPT-2) do.
1310
+
1311
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1312
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1313
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1314
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1315
+ each row of the batch).
1316
+ """,
1317
+ LLAMA_START_DOCSTRING,
1318
+ )
1319
+ class TPULlamaForSequenceClassification(TPULlamaPreTrainedModel):
1320
+ def __init__(self, config):
1321
+ super().__init__(config)
1322
+ self.num_labels = config.num_labels
1323
+ self.model = TPULlamaModel(config)
1324
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1325
+
1326
+ # Initialize weights and apply final processing
1327
+ self.post_init()
1328
+
1329
+ def get_input_embeddings(self):
1330
+ return self.model.embed_tokens
1331
+
1332
+ def set_input_embeddings(self, value):
1333
+ self.model.embed_tokens = value
1334
+
1335
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1336
+ def forward(
1337
+ self,
1338
+ input_ids: Optional[torch.LongTensor] = None,
1339
+ attention_mask: Optional[torch.Tensor] = None,
1340
+ position_ids: Optional[torch.LongTensor] = None,
1341
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1342
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1343
+ labels: Optional[torch.LongTensor] = None,
1344
+ use_cache: Optional[bool] = None,
1345
+ output_attentions: Optional[bool] = None,
1346
+ output_hidden_states: Optional[bool] = None,
1347
+ return_dict: Optional[bool] = None,
1348
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1349
+ r"""
1350
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1351
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1352
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1353
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1354
+ """
1355
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1356
+
1357
+ transformer_outputs = self.model(
1358
+ input_ids,
1359
+ attention_mask=attention_mask,
1360
+ position_ids=position_ids,
1361
+ past_key_values=past_key_values,
1362
+ inputs_embeds=inputs_embeds,
1363
+ use_cache=use_cache,
1364
+ output_attentions=output_attentions,
1365
+ output_hidden_states=output_hidden_states,
1366
+ return_dict=return_dict,
1367
+ )
1368
+ hidden_states = transformer_outputs[0]
1369
+ logits = self.score(hidden_states)
1370
+
1371
+ if input_ids is not None:
1372
+ batch_size = input_ids.shape[0]
1373
+ else:
1374
+ batch_size = inputs_embeds.shape[0]
1375
+
1376
+ if self.config.pad_token_id is None and batch_size != 1:
1377
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1378
+ if self.config.pad_token_id is None:
1379
+ sequence_lengths = -1
1380
+ else:
1381
+ if input_ids is not None:
1382
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1383
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1384
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1385
+ sequence_lengths = sequence_lengths.to(logits.device)
1386
+ else:
1387
+ sequence_lengths = -1
1388
+
1389
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1390
+
1391
+ loss = None
1392
+ if labels is not None:
1393
+ labels = labels.to(logits.device)
1394
+ if self.config.problem_type is None:
1395
+ if self.num_labels == 1:
1396
+ self.config.problem_type = "regression"
1397
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1398
+ self.config.problem_type = "single_label_classification"
1399
+ else:
1400
+ self.config.problem_type = "multi_label_classification"
1401
+
1402
+ if self.config.problem_type == "regression":
1403
+ loss_fct = MSELoss()
1404
+ if self.num_labels == 1:
1405
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1406
+ else:
1407
+ loss = loss_fct(pooled_logits, labels)
1408
+ elif self.config.problem_type == "single_label_classification":
1409
+ loss_fct = CrossEntropyLoss()
1410
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1411
+ elif self.config.problem_type == "multi_label_classification":
1412
+ loss_fct = BCEWithLogitsLoss()
1413
+ loss = loss_fct(pooled_logits, labels)
1414
+ if not return_dict:
1415
+ output = (pooled_logits,) + transformer_outputs[1:]
1416
+ return ((loss,) + output) if loss is not None else output
1417
+
1418
+ return SequenceClassifierOutputWithPast(
1419
+ loss=loss,
1420
+ logits=pooled_logits,
1421
+ past_key_values=transformer_outputs.past_key_values,
1422
+ hidden_states=transformer_outputs.hidden_states,
1423
+ attentions=transformer_outputs.attentions,
1424
+ )
1425
+
1426
+
1427
+ @add_start_docstrings(
1428
+ """
1429
+ The TPULlama Model transformer with a span classification head on top for extractive question-answering tasks like
1430
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1431
+ """,
1432
+ LLAMA_START_DOCSTRING,
1433
+ )
1434
+ class TPULlamaForQuestionAnswering(TPULlamaPreTrainedModel):
1435
+ base_model_prefix = "transformer"
1436
+
1437
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TPULlama
1438
+ def __init__(self, config):
1439
+ super().__init__(config)
1440
+ self.transformer = TPULlamaModel(config)
1441
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1442
+
1443
+ # Initialize weights and apply final processing
1444
+ self.post_init()
1445
+
1446
+ def get_input_embeddings(self):
1447
+ return self.transformer.embed_tokens
1448
+
1449
+ def set_input_embeddings(self, value):
1450
+ self.transformer.embed_tokens = value
1451
+
1452
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1453
+ def forward(
1454
+ self,
1455
+ input_ids: Optional[torch.LongTensor] = None,
1456
+ attention_mask: Optional[torch.FloatTensor] = None,
1457
+ position_ids: Optional[torch.LongTensor] = None,
1458
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1459
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1460
+ start_positions: Optional[torch.LongTensor] = None,
1461
+ end_positions: Optional[torch.LongTensor] = None,
1462
+ output_attentions: Optional[bool] = None,
1463
+ output_hidden_states: Optional[bool] = None,
1464
+ return_dict: Optional[bool] = None,
1465
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1466
+ r"""
1467
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1468
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1469
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1470
+ are not taken into account for computing the loss.
1471
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1472
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1473
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1474
+ are not taken into account for computing the loss.
1475
+ """
1476
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1477
+
1478
+ outputs = self.transformer(
1479
+ input_ids,
1480
+ attention_mask=attention_mask,
1481
+ position_ids=position_ids,
1482
+ past_key_values=past_key_values,
1483
+ inputs_embeds=inputs_embeds,
1484
+ output_attentions=output_attentions,
1485
+ output_hidden_states=output_hidden_states,
1486
+ return_dict=return_dict,
1487
+ )
1488
+
1489
+ sequence_output = outputs[0]
1490
+
1491
+ logits = self.qa_outputs(sequence_output)
1492
+ start_logits, end_logits = logits.split(1, dim=-1)
1493
+ start_logits = start_logits.squeeze(-1).contiguous()
1494
+ end_logits = end_logits.squeeze(-1).contiguous()
1495
+
1496
+ total_loss = None
1497
+ if start_positions is not None and end_positions is not None:
1498
+ # If we are on multi-GPU, split add a dimension
1499
+ if len(start_positions.size()) > 1:
1500
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1501
+ if len(end_positions.size()) > 1:
1502
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1503
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1504
+ ignored_index = start_logits.size(1)
1505
+ start_positions = start_positions.clamp(0, ignored_index)
1506
+ end_positions = end_positions.clamp(0, ignored_index)
1507
+
1508
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1509
+ start_loss = loss_fct(start_logits, start_positions)
1510
+ end_loss = loss_fct(end_logits, end_positions)
1511
+ total_loss = (start_loss + end_loss) / 2
1512
+
1513
+ if not return_dict:
1514
+ output = (start_logits, end_logits) + outputs[2:]
1515
+ return ((total_loss,) + output) if total_loss is not None else output
1516
+
1517
+ return QuestionAnsweringModelOutput(
1518
+ loss=total_loss,
1519
+ start_logits=start_logits,
1520
+ end_logits=end_logits,
1521
+ hidden_states=outputs.hidden_states,
1522
+ attentions=outputs.attentions,
1523
+ )
1524
+
1525
+
1526
+ @add_start_docstrings(
1527
+ """
1528
+ The TPULlama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1529
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1530
+ """,
1531
+ LLAMA_START_DOCSTRING,
1532
+ )
1533
+ class TPULlamaForTokenClassification(TPULlamaPreTrainedModel):
1534
+ def __init__(self, config):
1535
+ super().__init__(config)
1536
+ self.num_labels = config.num_labels
1537
+ self.model = TPULlamaModel(config)
1538
+ if getattr(config, "classifier_dropout", None) is not None:
1539
+ classifier_dropout = config.classifier_dropout
1540
+ elif getattr(config, "hidden_dropout", None) is not None:
1541
+ classifier_dropout = config.hidden_dropout
1542
+ else:
1543
+ classifier_dropout = 0.1
1544
+ self.dropout = nn.Dropout(classifier_dropout)
1545
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1546
+
1547
+ # Initialize weights and apply final processing
1548
+ self.post_init()
1549
+
1550
+ def get_input_embeddings(self):
1551
+ return self.model.embed_tokens
1552
+
1553
+ def set_input_embeddings(self, value):
1554
+ self.model.embed_tokens = value
1555
+
1556
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1557
+ def forward(
1558
+ self,
1559
+ input_ids: Optional[torch.LongTensor] = None,
1560
+ attention_mask: Optional[torch.Tensor] = None,
1561
+ position_ids: Optional[torch.LongTensor] = None,
1562
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1563
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1564
+ labels: Optional[torch.LongTensor] = None,
1565
+ use_cache: Optional[bool] = None,
1566
+ output_attentions: Optional[bool] = None,
1567
+ output_hidden_states: Optional[bool] = None,
1568
+ return_dict: Optional[bool] = None,
1569
+ ) -> Union[Tuple, TokenClassifierOutput]:
1570
+ r"""
1571
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1572
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1573
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1574
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1575
+ """
1576
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1577
+
1578
+ outputs = self.model(
1579
+ input_ids,
1580
+ attention_mask=attention_mask,
1581
+ position_ids=position_ids,
1582
+ past_key_values=past_key_values,
1583
+ inputs_embeds=inputs_embeds,
1584
+ use_cache=use_cache,
1585
+ output_attentions=output_attentions,
1586
+ output_hidden_states=output_hidden_states,
1587
+ return_dict=return_dict,
1588
+ )
1589
+ sequence_output = outputs[0]
1590
+ sequence_output = self.dropout(sequence_output)
1591
+ logits = self.score(sequence_output)
1592
+
1593
+ loss = None
1594
+ if labels is not None:
1595
+ loss_fct = CrossEntropyLoss()
1596
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1597
+
1598
+ if not return_dict:
1599
+ output = (logits,) + outputs[2:]
1600
+ return ((loss,) + output) if loss is not None else output
1601
+
1602
+ return TokenClassifierOutput(
1603
+ loss=loss,
1604
+ logits=logits,
1605
+ hidden_states=outputs.hidden_states,
1606
+ attentions=outputs.attentions,
1607
+ )
special_tokens_map.json CHANGED
@@ -1,23 +1,5 @@
1
  {
2
- "bos_token": {
3
- "content": "<|begin_of_text|>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "<|eot_id|>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "<|eot_id|>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- }
23
  }
 
1
  {
2
+ "bos_token": "<|begin_of_text|>",
3
+ "eos_token": "<|eot_id|>",
4
+ "pad_token": "<|end_of_text|>"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  }
tokenizer.json CHANGED
@@ -2,81 +2,13 @@
2
  "version": "1.0",
3
  "truncation": null,
4
  "padding": null,
5
- "added_tokens": [
6
- {
7
- "id": 256,
8
- "content": "<|begin_of_text|>",
9
- "single_word": false,
10
- "lstrip": false,
11
- "rstrip": false,
12
- "normalized": false,
13
- "special": true
14
- },
15
- {
16
- "id": 265,
17
- "content": "<|eot_id|>",
18
- "single_word": false,
19
- "lstrip": false,
20
- "rstrip": false,
21
- "normalized": false,
22
- "special": true
23
- },
24
- {
25
- "id": 512,
26
- "content": "ĊĊ",
27
- "single_word": false,
28
- "lstrip": false,
29
- "rstrip": false,
30
- "normalized": true,
31
- "special": false
32
- },
33
- {
34
- "id": 513,
35
- "content": "user",
36
- "single_word": false,
37
- "lstrip": false,
38
- "rstrip": false,
39
- "normalized": true,
40
- "special": false
41
- },
42
- {
43
- "id": 514,
44
- "content": "assistant",
45
- "single_word": false,
46
- "lstrip": false,
47
- "rstrip": false,
48
- "normalized": true,
49
- "special": false
50
- },
51
- {
52
- "id": 515,
53
- "content": "system",
54
- "single_word": false,
55
- "lstrip": false,
56
- "rstrip": false,
57
- "normalized": true,
58
- "special": false
59
- }
60
- ],
61
  "normalizer": null,
62
  "pre_tokenizer": {
63
- "type": "Sequence",
64
- "pretokenizers": [
65
- {
66
- "type": "Split",
67
- "pattern": {
68
- "Regex": "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
69
- },
70
- "behavior": "Isolated",
71
- "invert": false
72
- },
73
- {
74
- "type": "ByteLevel",
75
- "add_prefix_space": false,
76
- "trim_offsets": true,
77
- "use_regex": false
78
- }
79
- ]
80
  },
81
  "post_processor": {
82
  "type": "Sequence",
@@ -150,523 +82,1070 @@
150
  "use_regex": true
151
  },
152
  "model": {
153
- "type": "WordPiece",
154
- "unk_token": "<|eot_id|>",
155
- "continuing_subword_prefix": "",
156
- "max_input_chars_per_word": 1000000,
157
- "vocab": {
158
- "Ā": 0,
159
- "ā": 1,
160
- "Ă": 2,
161
- "ă": 3,
162
- "Ą": 4,
163
- "ą": 5,
164
- "Ć": 6,
165
- "ć": 7,
166
- "Ĉ": 8,
167
- "ĉ": 9,
168
- "Ċ": 10,
169
- "ċ": 11,
170
- "Č": 12,
171
- "č": 13,
172
- "Ď": 14,
173
- "ď": 15,
174
- "Đ": 16,
175
- "đ": 17,
176
- "Ē": 18,
177
- "ē": 19,
178
- "Ĕ": 20,
179
- "ĕ": 21,
180
- "Ė": 22,
181
- "ė": 23,
182
- "Ę": 24,
183
- "ę": 25,
184
- "Ě": 26,
185
- "ě": 27,
186
- "Ĝ": 28,
187
- "ĝ": 29,
188
- "Ğ": 30,
189
- "ğ": 31,
190
- "Ġ": 32,
191
- "!": 33,
192
- "\"": 34,
193
- "#": 35,
194
- "$": 36,
195
- "%": 37,
196
- "&": 38,
197
- "'": 39,
198
- "(": 40,
199
- ")": 41,
200
- "*": 42,
201
- "+": 43,
202
- ",": 44,
203
- "-": 45,
204
- ".": 46,
205
- "/": 47,
206
- "0": 48,
207
- "1": 49,
208
- "2": 50,
209
- "3": 51,
210
- "4": 52,
211
- "5": 53,
212
- "6": 54,
213
- "7": 55,
214
- "8": 56,
215
- "9": 57,
216
- ":": 58,
217
- ";": 59,
218
- "<": 60,
219
- "=": 61,
220
- ">": 62,
221
- "?": 63,
222
- "@": 64,
223
- "A": 65,
224
- "B": 66,
225
- "C": 67,
226
- "D": 68,
227
- "E": 69,
228
- "F": 70,
229
- "G": 71,
230
- "H": 72,
231
- "I": 73,
232
- "J": 74,
233
- "K": 75,
234
- "L": 76,
235
- "M": 77,
236
- "N": 78,
237
- "O": 79,
238
- "P": 80,
239
- "Q": 81,
240
- "R": 82,
241
- "S": 83,
242
- "T": 84,
243
- "U": 85,
244
- "V": 86,
245
- "W": 87,
246
- "X": 88,
247
- "Y": 89,
248
- "Z": 90,
249
- "[": 91,
250
- "\\": 92,
251
- "]": 93,
252
- "^": 94,
253
- "_": 95,
254
- "`": 96,
255
- "a": 97,
256
- "b": 98,
257
- "c": 99,
258
- "d": 100,
259
- "e": 101,
260
- "f": 102,
261
- "g": 103,
262
- "h": 104,
263
- "i": 105,
264
- "j": 106,
265
- "k": 107,
266
- "l": 108,
267
- "m": 109,
268
- "n": 110,
269
- "o": 111,
270
- "p": 112,
271
- "q": 113,
272
- "r": 114,
273
- "s": 115,
274
- "t": 116,
275
- "u": 117,
276
- "v": 118,
277
- "w": 119,
278
- "x": 120,
279
- "y": 121,
280
- "z": 122,
281
- "{": 123,
282
- "|": 124,
283
- "}": 125,
284
- "~": 126,
285
- "ġ": 127,
286
- "Ģ": 128,
287
- "ģ": 129,
288
- "Ĥ": 130,
289
- "ĥ": 131,
290
- "Ħ": 132,
291
- "ħ": 133,
292
- "Ĩ": 134,
293
- "ĩ": 135,
294
- "Ī": 136,
295
- "ī": 137,
296
- "Ĭ": 138,
297
- "ĭ": 139,
298
- "Į": 140,
299
- "į": 141,
300
- "İ": 142,
301
- "ı": 143,
302
- "IJ": 144,
303
- "ij": 145,
304
- "Ĵ": 146,
305
- "ĵ": 147,
306
- "Ķ": 148,
307
- "ķ": 149,
308
- "ĸ": 150,
309
- "Ĺ": 151,
310
- "ĺ": 152,
311
- "Ļ": 153,
312
- "ļ": 154,
313
- "Ľ": 155,
314
- "ľ": 156,
315
- "Ŀ": 157,
316
- "ŀ": 158,
317
- "Ł": 159,
318
- "ł": 160,
319
- "¡": 161,
320
- "¢": 162,
321
- "£": 163,
322
- "¤": 164,
323
- "¥": 165,
324
- "¦": 166,
325
- "§": 167,
326
- "¨": 168,
327
- "©": 169,
328
- "ª": 170,
329
- "«": 171,
330
- "¬": 172,
331
- "��": 173,
332
- "®": 174,
333
- "¯": 175,
334
- "°": 176,
335
- "±": 177,
336
- "²": 178,
337
- "³": 179,
338
- "´": 180,
339
- "µ": 181,
340
- "¶": 182,
341
- "·": 183,
342
- "¸": 184,
343
- "¹": 185,
344
- "º": 186,
345
- "»": 187,
346
- "¼": 188,
347
- "½": 189,
348
- "¾": 190,
349
- "¿": 191,
350
- "À": 192,
351
- "Á": 193,
352
- "Â": 194,
353
- "Ã": 195,
354
- "Ä": 196,
355
- "Å": 197,
356
- "Æ": 198,
357
- "Ç": 199,
358
- "È": 200,
359
- "É": 201,
360
- "Ê": 202,
361
- "Ë": 203,
362
- "Ì": 204,
363
- "Í": 205,
364
- "Î": 206,
365
- "Ï": 207,
366
- "Ð": 208,
367
- "Ñ": 209,
368
- "Ò": 210,
369
- "Ó": 211,
370
- "Ô": 212,
371
- "Õ": 213,
372
- "Ö": 214,
373
- "×": 215,
374
- "Ø": 216,
375
- "Ù": 217,
376
- "Ú": 218,
377
- "Û": 219,
378
- "Ü": 220,
379
- "Ý": 221,
380
- "Þ": 222,
381
- "ß": 223,
382
- "à": 224,
383
- "á": 225,
384
- "â": 226,
385
- "ã": 227,
386
- "ä": 228,
387
- "å": 229,
388
- "æ": 230,
389
- "ç": 231,
390
- "è": 232,
391
- "é": 233,
392
- "ê": 234,
393
- "ë": 235,
394
- "ì": 236,
395
- "í": 237,
396
- "î": 238,
397
- "ï": 239,
398
- "ð": 240,
399
- "ñ": 241,
400
- "ò": 242,
401
- "ó": 243,
402
- "ô": 244,
403
- "õ": 245,
404
- "ö": 246,
405
- "÷": 247,
406
- "ø": 248,
407
- "ù": 249,
408
- "ú": 250,
409
- "û": 251,
410
- "ü": 252,
411
- "ý": 253,
412
- "þ": 254,
413
- "ÿ": 255,
414
- "<|begin_of_text|>": 256,
415
- "<|end_of_text|>": 257,
416
- "<|reserved_special_token_0|>": 258,
417
- "<|reserved_special_token_1|>": 259,
418
- "<|finetune_right_pad_id|>": 260,
419
- "<|reserved_special_token_2|>": 261,
420
- "<|start_header_id|>": 262,
421
- "<|end_header_id|>": 263,
422
- "<|eom_id|>": 264,
423
- "<|eot_id|>": 265,
424
- "<|python_tag|>": 266,
425
- "<|reserved_special_token_3|>": 267,
426
- "<|reserved_special_token_4|>": 268,
427
- "<|reserved_special_token_5|>": 269,
428
- "<|reserved_special_token_6|>": 270,
429
- "<|reserved_special_token_7|>": 271,
430
- "<|reserved_special_token_8|>": 272,
431
- "<|reserved_special_token_9|>": 273,
432
- "<|reserved_special_token_10|>": 274,
433
- "<|reserved_special_token_11|>": 275,
434
- "<|reserved_special_token_12|>": 276,
435
- "<|reserved_special_token_13|>": 277,
436
- "<|reserved_special_token_14|>": 278,
437
- "<|reserved_special_token_15|>": 279,
438
- "<|reserved_special_token_16|>": 280,
439
- "<|reserved_special_token_17|>": 281,
440
- "<|reserved_special_token_18|>": 282,
441
- "<|reserved_special_token_19|>": 283,
442
- "<|reserved_special_token_20|>": 284,
443
- "<|reserved_special_token_21|>": 285,
444
- "<|reserved_special_token_22|>": 286,
445
- "<|reserved_special_token_23|>": 287,
446
- "<|reserved_special_token_24|>": 288,
447
- "<|reserved_special_token_25|>": 289,
448
- "<|reserved_special_token_26|>": 290,
449
- "<|reserved_special_token_27|>": 291,
450
- "<|reserved_special_token_28|>": 292,
451
- "<|reserved_special_token_29|>": 293,
452
- "<|reserved_special_token_30|>": 294,
453
- "<|reserved_special_token_31|>": 295,
454
- "<|reserved_special_token_32|>": 296,
455
- "<|reserved_special_token_33|>": 297,
456
- "<|reserved_special_token_34|>": 298,
457
- "<|reserved_special_token_35|>": 299,
458
- "<|reserved_special_token_36|>": 300,
459
- "<|reserved_special_token_37|>": 301,
460
- "<|reserved_special_token_38|>": 302,
461
- "<|reserved_special_token_39|>": 303,
462
- "<|reserved_special_token_40|>": 304,
463
- "<|reserved_special_token_41|>": 305,
464
- "<|reserved_special_token_42|>": 306,
465
- "<|reserved_special_token_43|>": 307,
466
- "<|reserved_special_token_44|>": 308,
467
- "<|reserved_special_token_45|>": 309,
468
- "<|reserved_special_token_46|>": 310,
469
- "<|reserved_special_token_47|>": 311,
470
- "<|reserved_special_token_48|>": 312,
471
- "<|reserved_special_token_49|>": 313,
472
- "<|reserved_special_token_50|>": 314,
473
- "<|reserved_special_token_51|>": 315,
474
- "<|reserved_special_token_52|>": 316,
475
- "<|reserved_special_token_53|>": 317,
476
- "<|reserved_special_token_54|>": 318,
477
- "<|reserved_special_token_55|>": 319,
478
- "<|reserved_special_token_56|>": 320,
479
- "<|reserved_special_token_57|>": 321,
480
- "<|reserved_special_token_58|>": 322,
481
- "<|reserved_special_token_59|>": 323,
482
- "<|reserved_special_token_60|>": 324,
483
- "<|reserved_special_token_61|>": 325,
484
- "<|reserved_special_token_62|>": 326,
485
- "<|reserved_special_token_63|>": 327,
486
- "<|reserved_special_token_64|>": 328,
487
- "<|reserved_special_token_65|>": 329,
488
- "<|reserved_special_token_66|>": 330,
489
- "<|reserved_special_token_67|>": 331,
490
- "<|reserved_special_token_68|>": 332,
491
- "<|reserved_special_token_69|>": 333,
492
- "<|reserved_special_token_70|>": 334,
493
- "<|reserved_special_token_71|>": 335,
494
- "<|reserved_special_token_72|>": 336,
495
- "<|reserved_special_token_73|>": 337,
496
- "<|reserved_special_token_74|>": 338,
497
- "<|reserved_special_token_75|>": 339,
498
- "<|reserved_special_token_76|>": 340,
499
- "<|reserved_special_token_77|>": 341,
500
- "<|reserved_special_token_78|>": 342,
501
- "<|reserved_special_token_79|>": 343,
502
- "<|reserved_special_token_80|>": 344,
503
- "<|reserved_special_token_81|>": 345,
504
- "<|reserved_special_token_82|>": 346,
505
- "<|reserved_special_token_83|>": 347,
506
- "<|reserved_special_token_84|>": 348,
507
- "<|reserved_special_token_85|>": 349,
508
- "<|reserved_special_token_86|>": 350,
509
- "<|reserved_special_token_87|>": 351,
510
- "<|reserved_special_token_88|>": 352,
511
- "<|reserved_special_token_89|>": 353,
512
- "<|reserved_special_token_90|>": 354,
513
- "<|reserved_special_token_91|>": 355,
514
- "<|reserved_special_token_92|>": 356,
515
- "<|reserved_special_token_93|>": 357,
516
- "<|reserved_special_token_94|>": 358,
517
- "<|reserved_special_token_95|>": 359,
518
- "<|reserved_special_token_96|>": 360,
519
- "<|reserved_special_token_97|>": 361,
520
- "<|reserved_special_token_98|>": 362,
521
- "<|reserved_special_token_99|>": 363,
522
- "<|reserved_special_token_100|>": 364,
523
- "<|reserved_special_token_101|>": 365,
524
- "<|reserved_special_token_102|>": 366,
525
- "<|reserved_special_token_103|>": 367,
526
- "<|reserved_special_token_104|>": 368,
527
- "<|reserved_special_token_105|>": 369,
528
- "<|reserved_special_token_106|>": 370,
529
- "<|reserved_special_token_107|>": 371,
530
- "<|reserved_special_token_108|>": 372,
531
- "<|reserved_special_token_109|>": 373,
532
- "<|reserved_special_token_110|>": 374,
533
- "<|reserved_special_token_111|>": 375,
534
- "<|reserved_special_token_112|>": 376,
535
- "<|reserved_special_token_113|>": 377,
536
- "<|reserved_special_token_114|>": 378,
537
- "<|reserved_special_token_115|>": 379,
538
- "<|reserved_special_token_116|>": 380,
539
- "<|reserved_special_token_117|>": 381,
540
- "<|reserved_special_token_118|>": 382,
541
- "<|reserved_special_token_119|>": 383,
542
- "<|reserved_special_token_120|>": 384,
543
- "<|reserved_special_token_121|>": 385,
544
- "<|reserved_special_token_122|>": 386,
545
- "<|reserved_special_token_123|>": 387,
546
- "<|reserved_special_token_124|>": 388,
547
- "<|reserved_special_token_125|>": 389,
548
- "<|reserved_special_token_126|>": 390,
549
- "<|reserved_special_token_127|>": 391,
550
- "<|reserved_special_token_128|>": 392,
551
- "<|reserved_special_token_129|>": 393,
552
- "<|reserved_special_token_130|>": 394,
553
- "<|reserved_special_token_131|>": 395,
554
- "<|reserved_special_token_132|>": 396,
555
- "<|reserved_special_token_133|>": 397,
556
- "<|reserved_special_token_134|>": 398,
557
- "<|reserved_special_token_135|>": 399,
558
- "<|reserved_special_token_136|>": 400,
559
- "<|reserved_special_token_137|>": 401,
560
- "<|reserved_special_token_138|>": 402,
561
- "<|reserved_special_token_139|>": 403,
562
- "<|reserved_special_token_140|>": 404,
563
- "<|reserved_special_token_141|>": 405,
564
- "<|reserved_special_token_142|>": 406,
565
- "<|reserved_special_token_143|>": 407,
566
- "<|reserved_special_token_144|>": 408,
567
- "<|reserved_special_token_145|>": 409,
568
- "<|reserved_special_token_146|>": 410,
569
- "<|reserved_special_token_147|>": 411,
570
- "<|reserved_special_token_148|>": 412,
571
- "<|reserved_special_token_149|>": 413,
572
- "<|reserved_special_token_150|>": 414,
573
- "<|reserved_special_token_151|>": 415,
574
- "<|reserved_special_token_152|>": 416,
575
- "<|reserved_special_token_153|>": 417,
576
- "<|reserved_special_token_154|>": 418,
577
- "<|reserved_special_token_155|>": 419,
578
- "<|reserved_special_token_156|>": 420,
579
- "<|reserved_special_token_157|>": 421,
580
- "<|reserved_special_token_158|>": 422,
581
- "<|reserved_special_token_159|>": 423,
582
- "<|reserved_special_token_160|>": 424,
583
- "<|reserved_special_token_161|>": 425,
584
- "<|reserved_special_token_162|>": 426,
585
- "<|reserved_special_token_163|>": 427,
586
- "<|reserved_special_token_164|>": 428,
587
- "<|reserved_special_token_165|>": 429,
588
- "<|reserved_special_token_166|>": 430,
589
- "<|reserved_special_token_167|>": 431,
590
- "<|reserved_special_token_168|>": 432,
591
- "<|reserved_special_token_169|>": 433,
592
- "<|reserved_special_token_170|>": 434,
593
- "<|reserved_special_token_171|>": 435,
594
- "<|reserved_special_token_172|>": 436,
595
- "<|reserved_special_token_173|>": 437,
596
- "<|reserved_special_token_174|>": 438,
597
- "<|reserved_special_token_175|>": 439,
598
- "<|reserved_special_token_176|>": 440,
599
- "<|reserved_special_token_177|>": 441,
600
- "<|reserved_special_token_178|>": 442,
601
- "<|reserved_special_token_179|>": 443,
602
- "<|reserved_special_token_180|>": 444,
603
- "<|reserved_special_token_181|>": 445,
604
- "<|reserved_special_token_182|>": 446,
605
- "<|reserved_special_token_183|>": 447,
606
- "<|reserved_special_token_184|>": 448,
607
- "<|reserved_special_token_185|>": 449,
608
- "<|reserved_special_token_186|>": 450,
609
- "<|reserved_special_token_187|>": 451,
610
- "<|reserved_special_token_188|>": 452,
611
- "<|reserved_special_token_189|>": 453,
612
- "<|reserved_special_token_190|>": 454,
613
- "<|reserved_special_token_191|>": 455,
614
- "<|reserved_special_token_192|>": 456,
615
- "<|reserved_special_token_193|>": 457,
616
- "<|reserved_special_token_194|>": 458,
617
- "<|reserved_special_token_195|>": 459,
618
- "<|reserved_special_token_196|>": 460,
619
- "<|reserved_special_token_197|>": 461,
620
- "<|reserved_special_token_198|>": 462,
621
- "<|reserved_special_token_199|>": 463,
622
- "<|reserved_special_token_200|>": 464,
623
- "<|reserved_special_token_201|>": 465,
624
- "<|reserved_special_token_202|>": 466,
625
- "<|reserved_special_token_203|>": 467,
626
- "<|reserved_special_token_204|>": 468,
627
- "<|reserved_special_token_205|>": 469,
628
- "<|reserved_special_token_206|>": 470,
629
- "<|reserved_special_token_207|>": 471,
630
- "<|reserved_special_token_208|>": 472,
631
- "<|reserved_special_token_209|>": 473,
632
- "<|reserved_special_token_210|>": 474,
633
- "<|reserved_special_token_211|>": 475,
634
- "<|reserved_special_token_212|>": 476,
635
- "<|reserved_special_token_213|>": 477,
636
- "<|reserved_special_token_214|>": 478,
637
- "<|reserved_special_token_215|>": 479,
638
- "<|reserved_special_token_216|>": 480,
639
- "<|reserved_special_token_217|>": 481,
640
- "<|reserved_special_token_218|>": 482,
641
- "<|reserved_special_token_219|>": 483,
642
- "<|reserved_special_token_220|>": 484,
643
- "<|reserved_special_token_221|>": 485,
644
- "<|reserved_special_token_222|>": 486,
645
- "<|reserved_special_token_223|>": 487,
646
- "<|reserved_special_token_224|>": 488,
647
- "<|reserved_special_token_225|>": 489,
648
- "<|reserved_special_token_226|>": 490,
649
- "<|reserved_special_token_227|>": 491,
650
- "<|reserved_special_token_228|>": 492,
651
- "<|reserved_special_token_229|>": 493,
652
- "<|reserved_special_token_230|>": 494,
653
- "<|reserved_special_token_231|>": 495,
654
- "<|reserved_special_token_232|>": 496,
655
- "<|reserved_special_token_233|>": 497,
656
- "<|reserved_special_token_234|>": 498,
657
- "<|reserved_special_token_235|>": 499,
658
- "<|reserved_special_token_236|>": 500,
659
- "<|reserved_special_token_237|>": 501,
660
- "<|reserved_special_token_238|>": 502,
661
- "<|reserved_special_token_239|>": 503,
662
- "<|reserved_special_token_240|>": 504,
663
- "<|reserved_special_token_241|>": 505,
664
- "<|reserved_special_token_242|>": 506,
665
- "<|reserved_special_token_243|>": 507,
666
- "<|reserved_special_token_244|>": 508,
667
- "<|reserved_special_token_245|>": 509,
668
- "<|reserved_special_token_246|>": 510,
669
- "<|reserved_special_token_247|>": 511
670
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671
  }
672
  }
 
2
  "version": "1.0",
3
  "truncation": null,
4
  "padding": null,
5
+ "added_tokens": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  "normalizer": null,
7
  "pre_tokenizer": {
8
+ "type": "ByteLevel",
9
+ "add_prefix_space": false,
10
+ "trim_offsets": true,
11
+ "use_regex": false
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  },
13
  "post_processor": {
14
  "type": "Sequence",
 
82
  "use_regex": true
83
  },
84
  "model": {
85
+ "type": "Unigram",
86
+ "unk_id": null,
87
+ "vocab": [
88
+ [
89
+ "Ā",
90
+ 0.0
91
+ ],
92
+ [
93
+ "ā",
94
+ 0.0
95
+ ],
96
+ [
97
+ "Ă",
98
+ 0.0
99
+ ],
100
+ [
101
+ "ă",
102
+ 0.0
103
+ ],
104
+ [
105
+ "Ą",
106
+ 0.0
107
+ ],
108
+ [
109
+ "ą",
110
+ 0.0
111
+ ],
112
+ [
113
+ "Ć",
114
+ 0.0
115
+ ],
116
+ [
117
+ "ć",
118
+ 0.0
119
+ ],
120
+ [
121
+ "Ĉ",
122
+ 0.0
123
+ ],
124
+ [
125
+ "ĉ",
126
+ 0.0
127
+ ],
128
+ [
129
+ "Ċ",
130
+ 0.0
131
+ ],
132
+ [
133
+ "ċ",
134
+ 0.0
135
+ ],
136
+ [
137
+ "Č",
138
+ 0.0
139
+ ],
140
+ [
141
+ "č",
142
+ 0.0
143
+ ],
144
+ [
145
+ "Ď",
146
+ 0.0
147
+ ],
148
+ [
149
+ "ď",
150
+ 0.0
151
+ ],
152
+ [
153
+ "Đ",
154
+ 0.0
155
+ ],
156
+ [
157
+ "đ",
158
+ 0.0
159
+ ],
160
+ [
161
+ "Ē",
162
+ 0.0
163
+ ],
164
+ [
165
+ "ē",
166
+ 0.0
167
+ ],
168
+ [
169
+ "Ĕ",
170
+ 0.0
171
+ ],
172
+ [
173
+ "ĕ",
174
+ 0.0
175
+ ],
176
+ [
177
+ "Ė",
178
+ 0.0
179
+ ],
180
+ [
181
+ "ė",
182
+ 0.0
183
+ ],
184
+ [
185
+ "Ę",
186
+ 0.0
187
+ ],
188
+ [
189
+ "ę",
190
+ 0.0
191
+ ],
192
+ [
193
+ "Ě",
194
+ 0.0
195
+ ],
196
+ [
197
+ "ě",
198
+ 0.0
199
+ ],
200
+ [
201
+ "Ĝ",
202
+ 0.0
203
+ ],
204
+ [
205
+ "ĝ",
206
+ 0.0
207
+ ],
208
+ [
209
+ "Ğ",
210
+ 0.0
211
+ ],
212
+ [
213
+ "ğ",
214
+ 0.0
215
+ ],
216
+ [
217
+ "Ġ",
218
+ 0.0
219
+ ],
220
+ [
221
+ "!",
222
+ 0.0
223
+ ],
224
+ [
225
+ "\"",
226
+ 0.0
227
+ ],
228
+ [
229
+ "#",
230
+ 0.0
231
+ ],
232
+ [
233
+ "$",
234
+ 0.0
235
+ ],
236
+ [
237
+ "%",
238
+ 0.0
239
+ ],
240
+ [
241
+ "&",
242
+ 0.0
243
+ ],
244
+ [
245
+ "'",
246
+ 0.0
247
+ ],
248
+ [
249
+ "(",
250
+ 0.0
251
+ ],
252
+ [
253
+ ")",
254
+ 0.0
255
+ ],
256
+ [
257
+ "*",
258
+ 0.0
259
+ ],
260
+ [
261
+ "+",
262
+ 0.0
263
+ ],
264
+ [
265
+ ",",
266
+ 0.0
267
+ ],
268
+ [
269
+ "-",
270
+ 0.0
271
+ ],
272
+ [
273
+ ".",
274
+ 0.0
275
+ ],
276
+ [
277
+ "/",
278
+ 0.0
279
+ ],
280
+ [
281
+ "0",
282
+ 0.0
283
+ ],
284
+ [
285
+ "1",
286
+ 0.0
287
+ ],
288
+ [
289
+ "2",
290
+ 0.0
291
+ ],
292
+ [
293
+ "3",
294
+ 0.0
295
+ ],
296
+ [
297
+ "4",
298
+ 0.0
299
+ ],
300
+ [
301
+ "5",
302
+ 0.0
303
+ ],
304
+ [
305
+ "6",
306
+ 0.0
307
+ ],
308
+ [
309
+ "7",
310
+ 0.0
311
+ ],
312
+ [
313
+ "8",
314
+ 0.0
315
+ ],
316
+ [
317
+ "9",
318
+ 0.0
319
+ ],
320
+ [
321
+ ":",
322
+ 0.0
323
+ ],
324
+ [
325
+ ";",
326
+ 0.0
327
+ ],
328
+ [
329
+ "<",
330
+ 0.0
331
+ ],
332
+ [
333
+ "=",
334
+ 0.0
335
+ ],
336
+ [
337
+ ">",
338
+ 0.0
339
+ ],
340
+ [
341
+ "?",
342
+ 0.0
343
+ ],
344
+ [
345
+ "@",
346
+ 0.0
347
+ ],
348
+ [
349
+ "A",
350
+ 0.0
351
+ ],
352
+ [
353
+ "B",
354
+ 0.0
355
+ ],
356
+ [
357
+ "C",
358
+ 0.0
359
+ ],
360
+ [
361
+ "D",
362
+ 0.0
363
+ ],
364
+ [
365
+ "E",
366
+ 0.0
367
+ ],
368
+ [
369
+ "F",
370
+ 0.0
371
+ ],
372
+ [
373
+ "G",
374
+ 0.0
375
+ ],
376
+ [
377
+ "H",
378
+ 0.0
379
+ ],
380
+ [
381
+ "I",
382
+ 0.0
383
+ ],
384
+ [
385
+ "J",
386
+ 0.0
387
+ ],
388
+ [
389
+ "K",
390
+ 0.0
391
+ ],
392
+ [
393
+ "L",
394
+ 0.0
395
+ ],
396
+ [
397
+ "M",
398
+ 0.0
399
+ ],
400
+ [
401
+ "N",
402
+ 0.0
403
+ ],
404
+ [
405
+ "O",
406
+ 0.0
407
+ ],
408
+ [
409
+ "P",
410
+ 0.0
411
+ ],
412
+ [
413
+ "Q",
414
+ 0.0
415
+ ],
416
+ [
417
+ "R",
418
+ 0.0
419
+ ],
420
+ [
421
+ "S",
422
+ 0.0
423
+ ],
424
+ [
425
+ "T",
426
+ 0.0
427
+ ],
428
+ [
429
+ "U",
430
+ 0.0
431
+ ],
432
+ [
433
+ "V",
434
+ 0.0
435
+ ],
436
+ [
437
+ "W",
438
+ 0.0
439
+ ],
440
+ [
441
+ "X",
442
+ 0.0
443
+ ],
444
+ [
445
+ "Y",
446
+ 0.0
447
+ ],
448
+ [
449
+ "Z",
450
+ 0.0
451
+ ],
452
+ [
453
+ "[",
454
+ 0.0
455
+ ],
456
+ [
457
+ "\\",
458
+ 0.0
459
+ ],
460
+ [
461
+ "]",
462
+ 0.0
463
+ ],
464
+ [
465
+ "^",
466
+ 0.0
467
+ ],
468
+ [
469
+ "_",
470
+ 0.0
471
+ ],
472
+ [
473
+ "`",
474
+ 0.0
475
+ ],
476
+ [
477
+ "a",
478
+ 0.0
479
+ ],
480
+ [
481
+ "b",
482
+ 0.0
483
+ ],
484
+ [
485
+ "c",
486
+ 0.0
487
+ ],
488
+ [
489
+ "d",
490
+ 0.0
491
+ ],
492
+ [
493
+ "e",
494
+ 0.0
495
+ ],
496
+ [
497
+ "f",
498
+ 0.0
499
+ ],
500
+ [
501
+ "g",
502
+ 0.0
503
+ ],
504
+ [
505
+ "h",
506
+ 0.0
507
+ ],
508
+ [
509
+ "i",
510
+ 0.0
511
+ ],
512
+ [
513
+ "j",
514
+ 0.0
515
+ ],
516
+ [
517
+ "k",
518
+ 0.0
519
+ ],
520
+ [
521
+ "l",
522
+ 0.0
523
+ ],
524
+ [
525
+ "m",
526
+ 0.0
527
+ ],
528
+ [
529
+ "n",
530
+ 0.0
531
+ ],
532
+ [
533
+ "o",
534
+ 0.0
535
+ ],
536
+ [
537
+ "p",
538
+ 0.0
539
+ ],
540
+ [
541
+ "q",
542
+ 0.0
543
+ ],
544
+ [
545
+ "r",
546
+ 0.0
547
+ ],
548
+ [
549
+ "s",
550
+ 0.0
551
+ ],
552
+ [
553
+ "t",
554
+ 0.0
555
+ ],
556
+ [
557
+ "u",
558
+ 0.0
559
+ ],
560
+ [
561
+ "v",
562
+ 0.0
563
+ ],
564
+ [
565
+ "w",
566
+ 0.0
567
+ ],
568
+ [
569
+ "x",
570
+ 0.0
571
+ ],
572
+ [
573
+ "y",
574
+ 0.0
575
+ ],
576
+ [
577
+ "z",
578
+ 0.0
579
+ ],
580
+ [
581
+ "{",
582
+ 0.0
583
+ ],
584
+ [
585
+ "|",
586
+ 0.0
587
+ ],
588
+ [
589
+ "}",
590
+ 0.0
591
+ ],
592
+ [
593
+ "~",
594
+ 0.0
595
+ ],
596
+ [
597
+ "ġ",
598
+ 0.0
599
+ ],
600
+ [
601
+ "Ģ",
602
+ 0.0
603
+ ],
604
+ [
605
+ "ģ",
606
+ 0.0
607
+ ],
608
+ [
609
+ "Ĥ",
610
+ 0.0
611
+ ],
612
+ [
613
+ "ĥ",
614
+ 0.0
615
+ ],
616
+ [
617
+ "Ħ",
618
+ 0.0
619
+ ],
620
+ [
621
+ "ħ",
622
+ 0.0
623
+ ],
624
+ [
625
+ "Ĩ",
626
+ 0.0
627
+ ],
628
+ [
629
+ "ĩ",
630
+ 0.0
631
+ ],
632
+ [
633
+ "Ī",
634
+ 0.0
635
+ ],
636
+ [
637
+ "ī",
638
+ 0.0
639
+ ],
640
+ [
641
+ "Ĭ",
642
+ 0.0
643
+ ],
644
+ [
645
+ "ĭ",
646
+ 0.0
647
+ ],
648
+ [
649
+ "Į",
650
+ 0.0
651
+ ],
652
+ [
653
+ "į",
654
+ 0.0
655
+ ],
656
+ [
657
+ "İ",
658
+ 0.0
659
+ ],
660
+ [
661
+ "ı",
662
+ 0.0
663
+ ],
664
+ [
665
+ "IJ",
666
+ 0.0
667
+ ],
668
+ [
669
+ "ij",
670
+ 0.0
671
+ ],
672
+ [
673
+ "Ĵ",
674
+ 0.0
675
+ ],
676
+ [
677
+ "ĵ",
678
+ 0.0
679
+ ],
680
+ [
681
+ "Ķ",
682
+ 0.0
683
+ ],
684
+ [
685
+ "ķ",
686
+ 0.0
687
+ ],
688
+ [
689
+ "ĸ",
690
+ 0.0
691
+ ],
692
+ [
693
+ "Ĺ",
694
+ 0.0
695
+ ],
696
+ [
697
+ "ĺ",
698
+ 0.0
699
+ ],
700
+ [
701
+ "Ļ",
702
+ 0.0
703
+ ],
704
+ [
705
+ "ļ",
706
+ 0.0
707
+ ],
708
+ [
709
+ "Ľ",
710
+ 0.0
711
+ ],
712
+ [
713
+ "ľ",
714
+ 0.0
715
+ ],
716
+ [
717
+ "Ŀ",
718
+ 0.0
719
+ ],
720
+ [
721
+ "ŀ",
722
+ 0.0
723
+ ],
724
+ [
725
+ "Ł",
726
+ 0.0
727
+ ],
728
+ [
729
+ "ł",
730
+ 0.0
731
+ ],
732
+ [
733
+ "¡",
734
+ 0.0
735
+ ],
736
+ [
737
+ "¢",
738
+ 0.0
739
+ ],
740
+ [
741
+ "£",
742
+ 0.0
743
+ ],
744
+ [
745
+ "¤",
746
+ 0.0
747
+ ],
748
+ [
749
+ "¥",
750
+ 0.0
751
+ ],
752
+ [
753
+ "¦",
754
+ 0.0
755
+ ],
756
+ [
757
+ "§",
758
+ 0.0
759
+ ],
760
+ [
761
+ "¨",
762
+ 0.0
763
+ ],
764
+ [
765
+ "©",
766
+ 0.0
767
+ ],
768
+ [
769
+ "ª",
770
+ 0.0
771
+ ],
772
+ [
773
+ "«",
774
+ 0.0
775
+ ],
776
+ [
777
+ "¬",
778
+ 0.0
779
+ ],
780
+ [
781
+ "Ń",
782
+ 0.0
783
+ ],
784
+ [
785
+ "®",
786
+ 0.0
787
+ ],
788
+ [
789
+ "¯",
790
+ 0.0
791
+ ],
792
+ [
793
+ "°",
794
+ 0.0
795
+ ],
796
+ [
797
+ "±",
798
+ 0.0
799
+ ],
800
+ [
801
+ "²",
802
+ 0.0
803
+ ],
804
+ [
805
+ "³",
806
+ 0.0
807
+ ],
808
+ [
809
+ "´",
810
+ 0.0
811
+ ],
812
+ [
813
+ "µ",
814
+ 0.0
815
+ ],
816
+ [
817
+ "¶",
818
+ 0.0
819
+ ],
820
+ [
821
+ "·",
822
+ 0.0
823
+ ],
824
+ [
825
+ "¸",
826
+ 0.0
827
+ ],
828
+ [
829
+ "¹",
830
+ 0.0
831
+ ],
832
+ [
833
+ "º",
834
+ 0.0
835
+ ],
836
+ [
837
+ "»",
838
+ 0.0
839
+ ],
840
+ [
841
+ "¼",
842
+ 0.0
843
+ ],
844
+ [
845
+ "½",
846
+ 0.0
847
+ ],
848
+ [
849
+ "¾",
850
+ 0.0
851
+ ],
852
+ [
853
+ "¿",
854
+ 0.0
855
+ ],
856
+ [
857
+ "À",
858
+ 0.0
859
+ ],
860
+ [
861
+ "Á",
862
+ 0.0
863
+ ],
864
+ [
865
+ "Â",
866
+ 0.0
867
+ ],
868
+ [
869
+ "Ã",
870
+ 0.0
871
+ ],
872
+ [
873
+ "Ä",
874
+ 0.0
875
+ ],
876
+ [
877
+ "Å",
878
+ 0.0
879
+ ],
880
+ [
881
+ "Æ",
882
+ 0.0
883
+ ],
884
+ [
885
+ "Ç",
886
+ 0.0
887
+ ],
888
+ [
889
+ "È",
890
+ 0.0
891
+ ],
892
+ [
893
+ "É",
894
+ 0.0
895
+ ],
896
+ [
897
+ "Ê",
898
+ 0.0
899
+ ],
900
+ [
901
+ "Ë",
902
+ 0.0
903
+ ],
904
+ [
905
+ "Ì",
906
+ 0.0
907
+ ],
908
+ [
909
+ "Í",
910
+ 0.0
911
+ ],
912
+ [
913
+ "Î",
914
+ 0.0
915
+ ],
916
+ [
917
+ "Ï",
918
+ 0.0
919
+ ],
920
+ [
921
+ "Ð",
922
+ 0.0
923
+ ],
924
+ [
925
+ "Ñ",
926
+ 0.0
927
+ ],
928
+ [
929
+ "Ò",
930
+ 0.0
931
+ ],
932
+ [
933
+ "Ó",
934
+ 0.0
935
+ ],
936
+ [
937
+ "Ô",
938
+ 0.0
939
+ ],
940
+ [
941
+ "Õ",
942
+ 0.0
943
+ ],
944
+ [
945
+ "Ö",
946
+ 0.0
947
+ ],
948
+ [
949
+ "×",
950
+ 0.0
951
+ ],
952
+ [
953
+ "Ø",
954
+ 0.0
955
+ ],
956
+ [
957
+ "Ù",
958
+ 0.0
959
+ ],
960
+ [
961
+ "Ú",
962
+ 0.0
963
+ ],
964
+ [
965
+ "Û",
966
+ 0.0
967
+ ],
968
+ [
969
+ "Ü",
970
+ 0.0
971
+ ],
972
+ [
973
+ "Ý",
974
+ 0.0
975
+ ],
976
+ [
977
+ "Þ",
978
+ 0.0
979
+ ],
980
+ [
981
+ "ß",
982
+ 0.0
983
+ ],
984
+ [
985
+ "à",
986
+ 0.0
987
+ ],
988
+ [
989
+ "á",
990
+ 0.0
991
+ ],
992
+ [
993
+ "â",
994
+ 0.0
995
+ ],
996
+ [
997
+ "ã",
998
+ 0.0
999
+ ],
1000
+ [
1001
+ "ä",
1002
+ 0.0
1003
+ ],
1004
+ [
1005
+ "å",
1006
+ 0.0
1007
+ ],
1008
+ [
1009
+ "æ",
1010
+ 0.0
1011
+ ],
1012
+ [
1013
+ "ç",
1014
+ 0.0
1015
+ ],
1016
+ [
1017
+ "è",
1018
+ 0.0
1019
+ ],
1020
+ [
1021
+ "é",
1022
+ 0.0
1023
+ ],
1024
+ [
1025
+ "ê",
1026
+ 0.0
1027
+ ],
1028
+ [
1029
+ "ë",
1030
+ 0.0
1031
+ ],
1032
+ [
1033
+ "ì",
1034
+ 0.0
1035
+ ],
1036
+ [
1037
+ "í",
1038
+ 0.0
1039
+ ],
1040
+ [
1041
+ "î",
1042
+ 0.0
1043
+ ],
1044
+ [
1045
+ "ï",
1046
+ 0.0
1047
+ ],
1048
+ [
1049
+ "ð",
1050
+ 0.0
1051
+ ],
1052
+ [
1053
+ "ñ",
1054
+ 0.0
1055
+ ],
1056
+ [
1057
+ "ò",
1058
+ 0.0
1059
+ ],
1060
+ [
1061
+ "ó",
1062
+ 0.0
1063
+ ],
1064
+ [
1065
+ "ô",
1066
+ 0.0
1067
+ ],
1068
+ [
1069
+ "õ",
1070
+ 0.0
1071
+ ],
1072
+ [
1073
+ "ö",
1074
+ 0.0
1075
+ ],
1076
+ [
1077
+ "÷",
1078
+ 0.0
1079
+ ],
1080
+ [
1081
+ "ø",
1082
+ 0.0
1083
+ ],
1084
+ [
1085
+ "ù",
1086
+ 0.0
1087
+ ],
1088
+ [
1089
+ "ú",
1090
+ 0.0
1091
+ ],
1092
+ [
1093
+ "û",
1094
+ 0.0
1095
+ ],
1096
+ [
1097
+ "ü",
1098
+ 0.0
1099
+ ],
1100
+ [
1101
+ "ý",
1102
+ 0.0
1103
+ ],
1104
+ [
1105
+ "þ",
1106
+ 0.0
1107
+ ],
1108
+ [
1109
+ "ÿ",
1110
+ 0.0
1111
+ ],
1112
+ [
1113
+ "<|begin_of_text|>",
1114
+ 0.0
1115
+ ],
1116
+ [
1117
+ "<|end_header_id|>",
1118
+ 0.0
1119
+ ],
1120
+ [
1121
+ "<|end_of_text|>",
1122
+ 0.0
1123
+ ],
1124
+ [
1125
+ "<|eot_id|>",
1126
+ 0.0
1127
+ ],
1128
+ [
1129
+ "<|start_header_id|>",
1130
+ 0.0
1131
+ ],
1132
+ [
1133
+ "assistant",
1134
+ 0.0
1135
+ ],
1136
+ [
1137
+ "system",
1138
+ 0.0
1139
+ ],
1140
+ [
1141
+ "user",
1142
+ 0.0
1143
+ ],
1144
+ [
1145
+ "ĊĊ",
1146
+ 0.0
1147
+ ]
1148
+ ],
1149
+ "byte_fallback": false
1150
  }
1151
  }
tokenizer_config.json CHANGED
@@ -1,54 +1,5 @@
1
  {
2
- "added_tokens_decoder": {
3
- "256": {
4
- "content": "<|begin_of_text|>",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "265": {
12
- "content": "<|eot_id|>",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "512": {
20
- "content": "ĊĊ",
21
- "lstrip": false,
22
- "normalized": true,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": false
26
- },
27
- "513": {
28
- "content": "user",
29
- "lstrip": false,
30
- "normalized": true,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": false
34
- },
35
- "514": {
36
- "content": "assistant",
37
- "lstrip": false,
38
- "normalized": true,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": false
42
- },
43
- "515": {
44
- "content": "system",
45
- "lstrip": false,
46
- "normalized": true,
47
- "rstrip": false,
48
- "single_word": false,
49
- "special": false
50
- }
51
- },
52
  "bos_token": "<|begin_of_text|>",
53
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
54
  "clean_up_tokenization_spaces": true,
@@ -58,6 +9,6 @@
58
  "attention_mask"
59
  ],
60
  "model_max_length": 131072,
61
- "pad_token": "<|eot_id|>",
62
  "tokenizer_class": "PreTrainedTokenizerFast"
63
  }
 
1
  {
2
+ "added_tokens_decoder": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  "bos_token": "<|begin_of_text|>",
4
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
5
  "clean_up_tokenization_spaces": true,
 
9
  "attention_mask"
10
  ],
11
  "model_max_length": 131072,
12
+ "pad_token": "<|end_of_text|>",
13
  "tokenizer_class": "PreTrainedTokenizerFast"
14
  }