--- library_name: transformers datasets: - nvidia/OpenMathInstruct-2 base_model: - google/gemma-2-2b-it --- # Gemma2-2B Distilled from OpenMath2-Llama3.1-8B Model Card Gemma2-2B distilled from [OpenMath2-Llama3.1-8B](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B) for math tasks. This model greatly outperforms the general-purpose Gemma2 instruction-tuning finetune on math tasks. ## Model Details - **Base Model:** Gemma2-2B - **Tokenization:** Gemma2-2B - **Training Methodology:** Distillation from OpenMath2-Llama3.1-8B on [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2). | **Benchmark** | **Gemma2-2B-Distilled-Math** | **Original Gemma2-2B-IT** | |---------------|------------------------------------|------------------------| | **GSM8K (zero-shot)** | 65.1 | 6.1 | | **MATH (zero-shot)** | 52.1 | 9.9 | ## Model Details Details on the training methodology are forthcoming. ## Use ```python import torch from transformers import pipeline template = "<|start_header_id|>user<|end_header_id|>\n\nSolve the following math problem. Make sure to put the answer (and only answer) inside \boxed{}.\n\n{{problem}}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" problem = "What is the minimum value of $a^2+6a-7$?" pipe = pipeline( "text-generation", model="benjamin/Gemma2-2B-Distilled-Math", model_kwargs={"torch_dtype": torch.bfloat16}, eos_token_id=107, device_map="auto", ) outputs = pipe(template.format(problem), max_new_tokens=256) assistant_response = outputs[0]["generated_text"].strip() print(assistant_response) ```