benballintyn commited on
Commit
6d868b2
·
1 Parent(s): 65f2d84

1st try at PPO LunarLander following course code

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 236.10 +/- 20.82
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7412e315e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7412e31670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7412e31700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7412e31790>", "_build": "<function ActorCriticPolicy._build at 0x7f7412e31820>", "forward": "<function ActorCriticPolicy.forward at 0x7f7412e318b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7412e31940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7412e319d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7412e31a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7412e31af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7412e31b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7412e336c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652833987.4479814, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF4vaG9tZS9iZW4vYW5hY29uZGEzL2VudnMvZGVlcF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL2hvbWUvYmVuL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCK0j3s8fq5bWgzuDwCIrO7rQM7AFxQNwAAgD8AAIA/JruIvcOBa7oKlkO7PIwItYoO1Dn6D2A6AACAPwAAgD+AATs9j84vushBCzqcFRW1gZRKOy8vIbkAAIA/AACAPyD9YT4PagK8icKEOztuF7k9vmW9aCGbugAAgD8AAIA/zXKlvRTIk7rC+qG6TMwvttFvn7oNaqA1AACAPwAAgD+mcri9GUwGPgk/Lr2AFIS+zt1+vQ7SrL0AAAAAAAAAAE2mDj7hUPe6MveWOApzR7VE0Ay8/JWwtwAAgD8AAIA/TV+KPfYkVLp6rNA5xjZzteTIf7pAGWm0AACAPwAAgD9mFoi7KQB9uu753jqCNQE2zBykOuPXAboAAIA/AACAP8Bqkb7RZ4U/67wyvV0/i744OUC+yh4VPgAAAAAAAAAAE9cMvnENZrkubuu6YhiouDMIyTtyk184AACAPwAAgD+AhUA9QCRyP3GYvD0zwri+i3OiPcNp0j0AAAAAAAAAADOMhL2PdkW6umJcu/fdcDg/glu71SrqOQAAgD8AAIA/s7QbvcMBN7qmehG4suiZNYr7eDrMuyY3AACAPwAAgD8AiZI8HyXAueacvjvu0iE46/wGu7tAl7cAAIA/AACAP5pktDy4/vk4ApIYvIrHwzYkA4o74P05tgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuyh64OP0YkCUhpRSlIwBbJRN6AOMAXSUR0CpE3+SB9ThdX2UKGgGaAloD0MIW7Iqwk2ERUCUhpRSlGgVS6doFkdAqRUhE0BOpXV9lChoBmgJaA9DCErUCz5NCGBAlIaUUpRoFU3oA2gWR0CpFgjvNNahdX2UKGgGaAloD0MI0LUvoJeUYUCUhpRSlGgVTegDaBZHQKkYAPVd5Y51fZQoaAZoCWgPQwhbs5WX/NlIQJSGlFKUaBVL7WgWR0CpGBpJPIn0dX2UKGgGaAloD0MIZqGd06z9YUCUhpRSlGgVTegDaBZHQKkYY9Jz1bt1fZQoaAZoCWgPQwjL2xFOCx4YwJSGlFKUaBVL1WgWR0CpGQKBEroXdX2UKGgGaAloD0MIdGGkF7ViZkCUhpRSlGgVTegDaBZHQKka+T+vQnh1fZQoaAZoCWgPQwhJEK6AQp0iQJSGlFKUaBVLomgWR0CpHKYNiH6/dX2UKGgGaAloD0MIX5fhP92uXECUhpRSlGgVTegDaBZHQKkeAx7AtWd1fZQoaAZoCWgPQwgXuDzWjNQxQJSGlFKUaBVL8WgWR0CpIfYO2AoYdX2UKGgGaAloD0MICOV9HM1+YECUhpRSlGgVTegDaBZHQKkh/3sXzlN1fZQoaAZoCWgPQwgS290DdH9IQJSGlFKUaBVL52gWR0CpLRjgIhQndX2UKGgGaAloD0MIFTsah/qwYECUhpRSlGgVTegDaBZHQKkufPhQ3xZ1fZQoaAZoCWgPQwhMGqN11AtiQJSGlFKUaBVN6ANoFkdAqS+UT101ZXV9lChoBmgJaA9DCDlCBvLsFGRAlIaUUpRoFU3oA2gWR0CpL80uUUwjdX2UKGgGaAloD0MIWrxYGCKBWkCUhpRSlGgVTegDaBZHQKkxd7b+Lm91fZQoaAZoCWgPQwg9tmXAWWRgQJSGlFKUaBVN6ANoFkdAqTSl7KJVKnV9lChoBmgJaA9DCMh8QKAzYl5AlIaUUpRoFU3oA2gWR0CpNb052hZhdX2UKGgGaAloD0MIM/rRcEqjYkCUhpRSlGgVTegDaBZHQKk2bQfp2U11fZQoaAZoCWgPQwh41QPmobdgQJSGlFKUaBVN6ANoFkdAqTkbSgGr0nV9lChoBmgJaA9DCOCe508bVlxAlIaUUpRoFU3oA2gWR0CpOgsUh3aBdX2UKGgGaAloD0MIbNECtK2WSUCUhpRSlGgVS/VoFkdAqTtRDb8FZHV9lChoBmgJaA9DCHszar5KfgFAlIaUUpRoFUu6aBZHQKk7e56MR6F1fZQoaAZoCWgPQwj5MeauJURLQJSGlFKUaBVN6ANoFkdAqTwNr433pXV9lChoBmgJaA9DCE1LrIxGJmBAlIaUUpRoFU3oA2gWR0CpPCQHzH0cdX2UKGgGaAloD0MISrN5HIZ2YUCUhpRSlGgVTegDaBZHQKk9BTefqX51fZQoaAZoCWgPQwgQecvVD/5gQJSGlFKUaBVN6ANoFkdAqUBNRHf/FXV9lChoBmgJaA9DCKio+pXOxFpAlIaUUpRoFU3oA2gWR0CpRYCr92ovdX2UKGgGaAloD0MIKVq5F5g8YECUhpRSlGgVTegDaBZHQKlFi0b961N1fZQoaAZoCWgPQwgAqrhxi7NZQJSGlFKUaBVN6ANoFkdAqVCebTc7AHV9lChoBmgJaA9DCKio+pXO5wZAlIaUUpRoFUuNaBZHQKlSFG+bmU51fZQoaAZoCWgPQwjc8/xpozNiQJSGlFKUaBVN6ANoFkdAqVI14/u9e3V9lChoBmgJaA9DCGdIFcUrzmNAlIaUUpRoFU3oA2gWR0CpU3S6+WWydX2UKGgGaAloD0MIbf5fdeS0VkCUhpRSlGgVTegDaBZHQKlTtHWBjF11fZQoaAZoCWgPQwh5lEp4QgxeQJSGlFKUaBVN6ANoFkdAqVWspmVZ93V9lChoBmgJaA9DCG2tLxLaqjlAlIaUUpRoFU0IAWgWR0CpWpoQ4CIUdX2UKGgGaAloD0MI0sQ7wBOsYkCUhpRSlGgVTegDaBZHQKlarJoTPB11fZQoaAZoCWgPQwgK1jibjlBGQJSGlFKUaBVL/WgWR0CpW3YbKifydX2UKGgGaAloD0MIDtdqD3tfXkCUhpRSlGgVTegDaBZHQKlexE5Qxet1fZQoaAZoCWgPQwhdGOlF7WFgQJSGlFKUaBVN6ANoFkdAqV/NTm4iHXV9lChoBmgJaA9DCNo391eP315AlIaUUpRoFU3oA2gWR0CpYTtoJzDGdX2UKGgGaAloD0MItK88SM9CZECUhpRSlGgVTegDaBZHQKlhaxWT5ft1fZQoaAZoCWgPQwgnMJ3WbZddQJSGlFKUaBVN6ANoFkdAqWH//NqxknV9lChoBmgJaA9DCK7UsyCUJVxAlIaUUpRoFU3oA2gWR0CpYhOPNmlJdX2UKGgGaAloD0MIARO4dTfGW0CUhpRSlGgVTegDaBZHQKli6jYZl4F1fZQoaAZoCWgPQwgKavgW1mpaQJSGlFKUaBVN6ANoFkdAqWY5Av+OwXV9lChoBmgJaA9DCMeA7PVuvGNAlIaUUpRoFU3oA2gWR0Cpa449gWrPdX2UKGgGaAloD0MIon4XtmaqY0CUhpRSlGgVTegDaBZHQKlut/+bVjJ1fZQoaAZoCWgPQwhYx/FDpSU4wJSGlFKUaBVNGAFoFkdAqW7JuQ6p53V9lChoBmgJaA9DCIXtJ2N8sGFAlIaUUpRoFU3oA2gWR0CpeLaWPcSHdX2UKGgGaAloD0MIXwzlRDvgYUCUhpRSlGgVTegDaBZHQKl6F9gnc+J1fZQoaAZoCWgPQwjL1voiIYtgQJSGlFKUaBVN6ANoFkdAqXvM0BOpKnV9lChoBmgJaA9DCNrGn6hsMGJAlIaUUpRoFU3oA2gWR0CpgAxGMGX5dX2UKGgGaAloD0MI4NbdPNVTYUCUhpRSlGgVTegDaBZHQKmAG+IMz/J1fZQoaAZoCWgPQwiMZmX7EI1kQJSGlFKUaBVN6ANoFkdAqYDDvXsgMnV9lChoBmgJaA9DCCqRRC+jUGNAlIaUUpRoFU3oA2gWR0Cpg2gIhQnAdX2UKGgGaAloD0MIuoEC7+R9YUCUhpRSlGgVTegDaBZHQKmESXHim2t1fZQoaAZoCWgPQwiIhVrTvDxkQJSGlFKUaBVN6ANoFkdAqYWC+UQkHHV9lChoBmgJaA9DCEn2CDVDQltAlIaUUpRoFU3oA2gWR0Cphaoi9qUNdX2UKGgGaAloD0MIHEC/798TWkCUhpRSlGgVTegDaBZHQKmGJZQHiWF1fZQoaAZoCWgPQwgyOEpeHRhiQJSGlFKUaBVN6ANoFkdAqYY3zDn/1nV9lChoBmgJaA9DCC+ob5nTNVtAlIaUUpRoFU3oA2gWR0CphvsP8Q7LdX2UKGgGaAloD0MIynA8nwFhNUCUhpRSlGgVS6xoFkdAqYhrKFIuoXV9lChoBmgJaA9DCJPJqZ1heV1AlIaUUpRoFU3oA2gWR0CpkBSflIVedX2UKGgGaAloD0MIIH9pUR+eY0CUhpRSlGgVTegDaBZHQKmTlh7Vrh11fZQoaAZoCWgPQwhqMXiYdnpiQJSGlFKUaBVN6ANoFkdAqZOpKL8763V9lChoBmgJaA9DCCVZh6Mrd2JAlIaUUpRoFU3oA2gWR0CplQhWo3rEdX2UKGgGaAloD0MInbryWR52Y0CUhpRSlGgVTegDaBZHQKme6tLcsUZ1fZQoaAZoCWgPQwjPFDqvsdReQJSGlFKUaBVN6ANoFkdAqaC7nzQNTnV9lChoBmgJaA9DCO8a9KW3SURAlIaUUpRoFUviaBZHQKmivLbpNbl1fZQoaAZoCWgPQwib5h2naDRhQJSGlFKUaBVN6ANoFkdAqaUCSq2jPHV9lChoBmgJaA9DCIBKlSh7N19AlIaUUpRoFU3oA2gWR0CppRFmOEM9dX2UKGgGaAloD0MIyXISSl+pYkCUhpRSlGgVTegDaBZHQKmlu065oXd1fZQoaAZoCWgPQwjZeoZwzH1eQJSGlFKUaBVN6ANoFkdAqahSBiCrcXV9lChoBmgJaA9DCA+3Q8NiiGRAlIaUUpRoFU3oA2gWR0CpqoeDOC5FdX2UKGgGaAloD0MImSoYldSBYUCUhpRSlGgVTegDaBZHQKmqsa9bor51fZQoaAZoCWgPQwgy5Nh6hiRhQJSGlFKUaBVN6ANoFkdAqas7yrgfl3V9lChoBmgJaA9DCLIrLSP1uGJAlIaUUpRoFU3oA2gWR0Cpq1CN83MqdX2UKGgGaAloD0MI/67PnHWzYUCUhpRSlGgVTegDaBZHQKmsMvAXVLB1fZQoaAZoCWgPQwj53An2X7ZhQJSGlFKUaBVN6ANoFkdAqa2oSHuZ1HV9lChoBmgJaA9DCEgzFk3nz2VAlIaUUpRoFU3oA2gWR0CptYKXv6TGdX2UKGgGaAloD0MIpMFtbeFoZkCUhpRSlGgVTegDaBZHQKm5C1aW5Yp1fZQoaAZoCWgPQwjNdoU+2MVhQJSGlFKUaBVN6ANoFkdAqbqTXnQpnnV9lChoBmgJaA9DCLr2BfRClGZAlIaUUpRoFU3oA2gWR0CpxFujZcs2dX2UKGgGaAloD0MI0T5W8FvYYkCUhpRSlGgVTegDaBZHQKnGRojfNzN1fZQoaAZoCWgPQwjJObGH9lxmQJSGlFKUaBVN6ANoFkdAqcg2/xlQM3V9lChoBmgJaA9DCP4LBAGyxWVAlIaUUpRoFU3oA2gWR0CpynVPWQOndX2UKGgGaAloD0MIlgm/1E8cYECUhpRSlGgVTegDaBZHQKnKhIatLct1fZQoaAZoCWgPQwi+v0F79TFgQJSGlFKUaBVN6ANoFkdAqcscmnfl63V9lChoBmgJaA9DCDC5UWQt8GJAlIaUUpRoFU3oA2gWR0CpzY4ZdfLLdX2UKGgGaAloD0MIwMsMG2XvYkCUhpRSlGgVTegDaBZHQKnPjCLuQZJ1fZQoaAZoCWgPQwg2kgThCkpgQJSGlFKUaBVN6ANoFkdAqc+yNEPUa3V9lChoBmgJaA9DCGd8X1wqpmJAlIaUUpRoFU3oA2gWR0Cp0C5gPVd5dX2UKGgGaAloD0MIMe2b+ysEYECUhpRSlGgVTegDaBZHQKnQQTcIqsl1fZQoaAZoCWgPQwgpWrkXmD5hQJSGlFKUaBVN6ANoFkdAqdD5PAO8TXV9lChoBmgJaA9DCPRvl/06xWBAlIaUUpRoFU3oA2gWR0Cp0kgxagVXdX2UKGgGaAloD0MIfO4E+690Y0CUhpRSlGgVTegDaBZHQKnYZETg2qF1fZQoaAZoCWgPQwgOZ341B7FeQJSGlFKUaBVN6ANoFkdAqdsyHEdeY3V9lChoBmgJaA9DCC0nofQFyGRAlIaUUpRoFU3oA2gWR0Cp3E+yAxzrdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF4vaG9tZS9iZW4vYW5hY29uZGEzL2VudnMvZGVlcF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL2hvbWUvYmVuL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.27 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68ea6a37a9a4449aa21ce8a0ca61a237d0824972198f72107415b1320094ed05
3
+ size 144174
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7412e315e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7412e31670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7412e31700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7412e31790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7412e31820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7412e318b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7412e31940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7412e319d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7412e31a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7412e31af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7412e31b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f7412e336c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652833987.4479814,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF4vaG9tZS9iZW4vYW5hY29uZGEzL2VudnMvZGVlcF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL2hvbWUvYmVuL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCK0j3s8fq5bWgzuDwCIrO7rQM7AFxQNwAAgD8AAIA/JruIvcOBa7oKlkO7PIwItYoO1Dn6D2A6AACAPwAAgD+AATs9j84vushBCzqcFRW1gZRKOy8vIbkAAIA/AACAPyD9YT4PagK8icKEOztuF7k9vmW9aCGbugAAgD8AAIA/zXKlvRTIk7rC+qG6TMwvttFvn7oNaqA1AACAPwAAgD+mcri9GUwGPgk/Lr2AFIS+zt1+vQ7SrL0AAAAAAAAAAE2mDj7hUPe6MveWOApzR7VE0Ay8/JWwtwAAgD8AAIA/TV+KPfYkVLp6rNA5xjZzteTIf7pAGWm0AACAPwAAgD9mFoi7KQB9uu753jqCNQE2zBykOuPXAboAAIA/AACAP8Bqkb7RZ4U/67wyvV0/i744OUC+yh4VPgAAAAAAAAAAE9cMvnENZrkubuu6YhiouDMIyTtyk184AACAPwAAgD+AhUA9QCRyP3GYvD0zwri+i3OiPcNp0j0AAAAAAAAAADOMhL2PdkW6umJcu/fdcDg/glu71SrqOQAAgD8AAIA/s7QbvcMBN7qmehG4suiZNYr7eDrMuyY3AACAPwAAgD8AiZI8HyXAueacvjvu0iE46/wGu7tAl7cAAIA/AACAP5pktDy4/vk4ApIYvIrHwzYkA4o74P05tgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuyh64OP0YkCUhpRSlIwBbJRN6AOMAXSUR0CpE3+SB9ThdX2UKGgGaAloD0MIW7Iqwk2ERUCUhpRSlGgVS6doFkdAqRUhE0BOpXV9lChoBmgJaA9DCErUCz5NCGBAlIaUUpRoFU3oA2gWR0CpFgjvNNahdX2UKGgGaAloD0MI0LUvoJeUYUCUhpRSlGgVTegDaBZHQKkYAPVd5Y51fZQoaAZoCWgPQwhbs5WX/NlIQJSGlFKUaBVL7WgWR0CpGBpJPIn0dX2UKGgGaAloD0MIZqGd06z9YUCUhpRSlGgVTegDaBZHQKkYY9Jz1bt1fZQoaAZoCWgPQwjL2xFOCx4YwJSGlFKUaBVL1WgWR0CpGQKBEroXdX2UKGgGaAloD0MIdGGkF7ViZkCUhpRSlGgVTegDaBZHQKka+T+vQnh1fZQoaAZoCWgPQwhJEK6AQp0iQJSGlFKUaBVLomgWR0CpHKYNiH6/dX2UKGgGaAloD0MIX5fhP92uXECUhpRSlGgVTegDaBZHQKkeAx7AtWd1fZQoaAZoCWgPQwgXuDzWjNQxQJSGlFKUaBVL8WgWR0CpIfYO2AoYdX2UKGgGaAloD0MICOV9HM1+YECUhpRSlGgVTegDaBZHQKkh/3sXzlN1fZQoaAZoCWgPQwgS290DdH9IQJSGlFKUaBVL52gWR0CpLRjgIhQndX2UKGgGaAloD0MIFTsah/qwYECUhpRSlGgVTegDaBZHQKkufPhQ3xZ1fZQoaAZoCWgPQwhMGqN11AtiQJSGlFKUaBVN6ANoFkdAqS+UT101ZXV9lChoBmgJaA9DCDlCBvLsFGRAlIaUUpRoFU3oA2gWR0CpL80uUUwjdX2UKGgGaAloD0MIWrxYGCKBWkCUhpRSlGgVTegDaBZHQKkxd7b+Lm91fZQoaAZoCWgPQwg9tmXAWWRgQJSGlFKUaBVN6ANoFkdAqTSl7KJVKnV9lChoBmgJaA9DCMh8QKAzYl5AlIaUUpRoFU3oA2gWR0CpNb052hZhdX2UKGgGaAloD0MIM/rRcEqjYkCUhpRSlGgVTegDaBZHQKk2bQfp2U11fZQoaAZoCWgPQwh41QPmobdgQJSGlFKUaBVN6ANoFkdAqTkbSgGr0nV9lChoBmgJaA9DCOCe508bVlxAlIaUUpRoFU3oA2gWR0CpOgsUh3aBdX2UKGgGaAloD0MIbNECtK2WSUCUhpRSlGgVS/VoFkdAqTtRDb8FZHV9lChoBmgJaA9DCHszar5KfgFAlIaUUpRoFUu6aBZHQKk7e56MR6F1fZQoaAZoCWgPQwj5MeauJURLQJSGlFKUaBVN6ANoFkdAqTwNr433pXV9lChoBmgJaA9DCE1LrIxGJmBAlIaUUpRoFU3oA2gWR0CpPCQHzH0cdX2UKGgGaAloD0MISrN5HIZ2YUCUhpRSlGgVTegDaBZHQKk9BTefqX51fZQoaAZoCWgPQwgQecvVD/5gQJSGlFKUaBVN6ANoFkdAqUBNRHf/FXV9lChoBmgJaA9DCKio+pXOxFpAlIaUUpRoFU3oA2gWR0CpRYCr92ovdX2UKGgGaAloD0MIKVq5F5g8YECUhpRSlGgVTegDaBZHQKlFi0b961N1fZQoaAZoCWgPQwgAqrhxi7NZQJSGlFKUaBVN6ANoFkdAqVCebTc7AHV9lChoBmgJaA9DCKio+pXO5wZAlIaUUpRoFUuNaBZHQKlSFG+bmU51fZQoaAZoCWgPQwjc8/xpozNiQJSGlFKUaBVN6ANoFkdAqVI14/u9e3V9lChoBmgJaA9DCGdIFcUrzmNAlIaUUpRoFU3oA2gWR0CpU3S6+WWydX2UKGgGaAloD0MIbf5fdeS0VkCUhpRSlGgVTegDaBZHQKlTtHWBjF11fZQoaAZoCWgPQwh5lEp4QgxeQJSGlFKUaBVN6ANoFkdAqVWspmVZ93V9lChoBmgJaA9DCG2tLxLaqjlAlIaUUpRoFU0IAWgWR0CpWpoQ4CIUdX2UKGgGaAloD0MI0sQ7wBOsYkCUhpRSlGgVTegDaBZHQKlarJoTPB11fZQoaAZoCWgPQwgK1jibjlBGQJSGlFKUaBVL/WgWR0CpW3YbKifydX2UKGgGaAloD0MIDtdqD3tfXkCUhpRSlGgVTegDaBZHQKlexE5Qxet1fZQoaAZoCWgPQwhdGOlF7WFgQJSGlFKUaBVN6ANoFkdAqV/NTm4iHXV9lChoBmgJaA9DCNo391eP315AlIaUUpRoFU3oA2gWR0CpYTtoJzDGdX2UKGgGaAloD0MItK88SM9CZECUhpRSlGgVTegDaBZHQKlhaxWT5ft1fZQoaAZoCWgPQwgnMJ3WbZddQJSGlFKUaBVN6ANoFkdAqWH//NqxknV9lChoBmgJaA9DCK7UsyCUJVxAlIaUUpRoFU3oA2gWR0CpYhOPNmlJdX2UKGgGaAloD0MIARO4dTfGW0CUhpRSlGgVTegDaBZHQKli6jYZl4F1fZQoaAZoCWgPQwgKavgW1mpaQJSGlFKUaBVN6ANoFkdAqWY5Av+OwXV9lChoBmgJaA9DCMeA7PVuvGNAlIaUUpRoFU3oA2gWR0Cpa449gWrPdX2UKGgGaAloD0MIon4XtmaqY0CUhpRSlGgVTegDaBZHQKlut/+bVjJ1fZQoaAZoCWgPQwhYx/FDpSU4wJSGlFKUaBVNGAFoFkdAqW7JuQ6p53V9lChoBmgJaA9DCIXtJ2N8sGFAlIaUUpRoFU3oA2gWR0CpeLaWPcSHdX2UKGgGaAloD0MIXwzlRDvgYUCUhpRSlGgVTegDaBZHQKl6F9gnc+J1fZQoaAZoCWgPQwjL1voiIYtgQJSGlFKUaBVN6ANoFkdAqXvM0BOpKnV9lChoBmgJaA9DCNrGn6hsMGJAlIaUUpRoFU3oA2gWR0CpgAxGMGX5dX2UKGgGaAloD0MI4NbdPNVTYUCUhpRSlGgVTegDaBZHQKmAG+IMz/J1fZQoaAZoCWgPQwiMZmX7EI1kQJSGlFKUaBVN6ANoFkdAqYDDvXsgMnV9lChoBmgJaA9DCCqRRC+jUGNAlIaUUpRoFU3oA2gWR0Cpg2gIhQnAdX2UKGgGaAloD0MIuoEC7+R9YUCUhpRSlGgVTegDaBZHQKmESXHim2t1fZQoaAZoCWgPQwiIhVrTvDxkQJSGlFKUaBVN6ANoFkdAqYWC+UQkHHV9lChoBmgJaA9DCEn2CDVDQltAlIaUUpRoFU3oA2gWR0Cphaoi9qUNdX2UKGgGaAloD0MIHEC/798TWkCUhpRSlGgVTegDaBZHQKmGJZQHiWF1fZQoaAZoCWgPQwgyOEpeHRhiQJSGlFKUaBVN6ANoFkdAqYY3zDn/1nV9lChoBmgJaA9DCC+ob5nTNVtAlIaUUpRoFU3oA2gWR0CphvsP8Q7LdX2UKGgGaAloD0MIynA8nwFhNUCUhpRSlGgVS6xoFkdAqYhrKFIuoXV9lChoBmgJaA9DCJPJqZ1heV1AlIaUUpRoFU3oA2gWR0CpkBSflIVedX2UKGgGaAloD0MIIH9pUR+eY0CUhpRSlGgVTegDaBZHQKmTlh7Vrh11fZQoaAZoCWgPQwhqMXiYdnpiQJSGlFKUaBVN6ANoFkdAqZOpKL8763V9lChoBmgJaA9DCCVZh6Mrd2JAlIaUUpRoFU3oA2gWR0CplQhWo3rEdX2UKGgGaAloD0MInbryWR52Y0CUhpRSlGgVTegDaBZHQKme6tLcsUZ1fZQoaAZoCWgPQwjPFDqvsdReQJSGlFKUaBVN6ANoFkdAqaC7nzQNTnV9lChoBmgJaA9DCO8a9KW3SURAlIaUUpRoFUviaBZHQKmivLbpNbl1fZQoaAZoCWgPQwib5h2naDRhQJSGlFKUaBVN6ANoFkdAqaUCSq2jPHV9lChoBmgJaA9DCIBKlSh7N19AlIaUUpRoFU3oA2gWR0CppRFmOEM9dX2UKGgGaAloD0MIyXISSl+pYkCUhpRSlGgVTegDaBZHQKmlu065oXd1fZQoaAZoCWgPQwjZeoZwzH1eQJSGlFKUaBVN6ANoFkdAqahSBiCrcXV9lChoBmgJaA9DCA+3Q8NiiGRAlIaUUpRoFU3oA2gWR0CpqoeDOC5FdX2UKGgGaAloD0MImSoYldSBYUCUhpRSlGgVTegDaBZHQKmqsa9bor51fZQoaAZoCWgPQwgy5Nh6hiRhQJSGlFKUaBVN6ANoFkdAqas7yrgfl3V9lChoBmgJaA9DCLIrLSP1uGJAlIaUUpRoFU3oA2gWR0Cpq1CN83MqdX2UKGgGaAloD0MI/67PnHWzYUCUhpRSlGgVTegDaBZHQKmsMvAXVLB1fZQoaAZoCWgPQwj53An2X7ZhQJSGlFKUaBVN6ANoFkdAqa2oSHuZ1HV9lChoBmgJaA9DCEgzFk3nz2VAlIaUUpRoFU3oA2gWR0CptYKXv6TGdX2UKGgGaAloD0MIpMFtbeFoZkCUhpRSlGgVTegDaBZHQKm5C1aW5Yp1fZQoaAZoCWgPQwjNdoU+2MVhQJSGlFKUaBVN6ANoFkdAqbqTXnQpnnV9lChoBmgJaA9DCLr2BfRClGZAlIaUUpRoFU3oA2gWR0CpxFujZcs2dX2UKGgGaAloD0MI0T5W8FvYYkCUhpRSlGgVTegDaBZHQKnGRojfNzN1fZQoaAZoCWgPQwjJObGH9lxmQJSGlFKUaBVN6ANoFkdAqcg2/xlQM3V9lChoBmgJaA9DCP4LBAGyxWVAlIaUUpRoFU3oA2gWR0CpynVPWQOndX2UKGgGaAloD0MIlgm/1E8cYECUhpRSlGgVTegDaBZHQKnKhIatLct1fZQoaAZoCWgPQwi+v0F79TFgQJSGlFKUaBVN6ANoFkdAqcscmnfl63V9lChoBmgJaA9DCDC5UWQt8GJAlIaUUpRoFU3oA2gWR0CpzY4ZdfLLdX2UKGgGaAloD0MIwMsMG2XvYkCUhpRSlGgVTegDaBZHQKnPjCLuQZJ1fZQoaAZoCWgPQwg2kgThCkpgQJSGlFKUaBVN6ANoFkdAqc+yNEPUa3V9lChoBmgJaA9DCGd8X1wqpmJAlIaUUpRoFU3oA2gWR0Cp0C5gPVd5dX2UKGgGaAloD0MIMe2b+ysEYECUhpRSlGgVTegDaBZHQKnQQTcIqsl1fZQoaAZoCWgPQwgpWrkXmD5hQJSGlFKUaBVN6ANoFkdAqdD5PAO8TXV9lChoBmgJaA9DCPRvl/06xWBAlIaUUpRoFU3oA2gWR0Cp0kgxagVXdX2UKGgGaAloD0MIfO4E+690Y0CUhpRSlGgVTegDaBZHQKnYZETg2qF1fZQoaAZoCWgPQwgOZ341B7FeQJSGlFKUaBVN6ANoFkdAqdsyHEdeY3V9lChoBmgJaA9DCC0nofQFyGRAlIaUUpRoFU3oA2gWR0Cp3E+yAxzrdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjF4vaG9tZS9iZW4vYW5hY29uZGEzL2VudnMvZGVlcF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL2hvbWUvYmVuL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:015900f134684dcc742b7ebf144abe6222345b1fc06cff2f8bca6c55d02225aa
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1db4ac98a83cd40439129fc28b6fb30ce6626d2fd42aa68407aeabf6f46ba92a
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-109-generic-x86_64-with-glibc2.27 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022
2
+ Python: 3.9.12
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.5
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 236.09507837755942, "std_reward": 20.824716897921707, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T20:58:02.744792"}