bartowski commited on
Commit
f021b8c
·
verified ·
1 Parent(s): 2e8df1e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +21 -25
README.md CHANGED
@@ -1,24 +1,11 @@
1
  ---
2
- base_model: microsoft/Phi-3.5-mini-instruct
3
- language:
4
- - multilingual
5
- library_name: transformers
6
- license: mit
7
- license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE
8
- pipeline_tag: text-generation
9
- tags:
10
- - nlp
11
- - code
12
  quantized_by: bartowski
13
- widget:
14
- - messages:
15
- - role: user
16
- content: Can you provide ways to eat combinations of bananas and dragonfruits?
17
  ---
18
 
19
  ## Llamacpp imatrix Quantizations of Phi-3.5-mini-instruct
20
 
21
- Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3600">b3600</a> for quantization.
22
 
23
  Original model: https://huggingface.co/microsoft/Phi-3.5-mini-instruct
24
 
@@ -26,9 +13,6 @@ All quants made using imatrix option with dataset from [here](https://gist.githu
26
 
27
  Run them in [LM Studio](https://lmstudio.ai/)
28
 
29
- ## Torrent Files
30
- https://aitorrent.zerroug.de/bartowski-phi-3-5-mini-instruct-gguf-torrent/
31
-
32
  ## Prompt format
33
 
34
  ```
@@ -40,6 +24,7 @@ https://aitorrent.zerroug.de/bartowski-phi-3-5-mini-instruct-gguf-torrent/
40
  | Filename | Quant type | File Size | Split | Description |
41
  | -------- | ---------- | --------- | ----- | ----------- |
42
  | [Phi-3.5-mini-instruct-f32.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-f32.gguf) | f32 | 15.29GB | false | Full F32 weights. |
 
43
  | [Phi-3.5-mini-instruct-Q8_0.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q8_0.gguf) | Q8_0 | 4.06GB | false | Extremely high quality, generally unneeded but max available quant. |
44
  | [Phi-3.5-mini-instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q6_K_L.gguf) | Q6_K_L | 3.18GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
45
  | [Phi-3.5-mini-instruct-Q6_K.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q6_K.gguf) | Q6_K | 3.14GB | false | Very high quality, near perfect, *recommended*. |
@@ -49,6 +34,10 @@ https://aitorrent.zerroug.de/bartowski-phi-3-5-mini-instruct-gguf-torrent/
49
  | [Phi-3.5-mini-instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_K_L.gguf) | Q4_K_L | 2.47GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
50
  | [Phi-3.5-mini-instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_K_M.gguf) | Q4_K_M | 2.39GB | false | Good quality, default size for must use cases, *recommended*. |
51
  | [Phi-3.5-mini-instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_K_S.gguf) | Q4_K_S | 2.19GB | false | Slightly lower quality with more space savings, *recommended*. |
 
 
 
 
52
  | [Phi-3.5-mini-instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q3_K_XL.gguf) | Q3_K_XL | 2.17GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
53
  | [Phi-3.5-mini-instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q3_K_L.gguf) | Q3_K_L | 2.09GB | false | Lower quality but usable, good for low RAM availability. |
54
  | [Phi-3.5-mini-instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-IQ4_XS.gguf) | IQ4_XS | 2.06GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
@@ -68,12 +57,6 @@ Some say that this improves the quality, others don't notice any difference. If
68
 
69
  Thanks!
70
 
71
- ## Credits
72
-
73
- Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
74
-
75
- Thank you ZeroWw for the inspiration to experiment with embed/output
76
-
77
  ## Downloading using huggingface-cli
78
 
79
  First, make sure you have hugginface-cli installed:
@@ -96,6 +79,14 @@ huggingface-cli download bartowski/Phi-3.5-mini-instruct-GGUF --include "Phi-3.5
96
 
97
  You can either specify a new local-dir (Phi-3.5-mini-instruct-Q8_0) or download them all in place (./)
98
 
 
 
 
 
 
 
 
 
99
  ## Which file should I choose?
100
 
101
  A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
@@ -120,5 +111,10 @@ These I-quants can also be used on CPU and Apple Metal, but will be slower than
120
 
121
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
122
 
123
- Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
124
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  quantized_by: bartowski
3
+ pipeline_tag: text-generation
 
 
 
4
  ---
5
 
6
  ## Llamacpp imatrix Quantizations of Phi-3.5-mini-instruct
7
 
8
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3751">b3751</a> for quantization.
9
 
10
  Original model: https://huggingface.co/microsoft/Phi-3.5-mini-instruct
11
 
 
13
 
14
  Run them in [LM Studio](https://lmstudio.ai/)
15
 
 
 
 
16
  ## Prompt format
17
 
18
  ```
 
24
  | Filename | Quant type | File Size | Split | Description |
25
  | -------- | ---------- | --------- | ----- | ----------- |
26
  | [Phi-3.5-mini-instruct-f32.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-f32.gguf) | f32 | 15.29GB | false | Full F32 weights. |
27
+ | [Phi-3.5-mini-instruct-f32.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-f32.gguf) | f32 | 15.29GB | false | Full F32 weights. |
28
  | [Phi-3.5-mini-instruct-Q8_0.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q8_0.gguf) | Q8_0 | 4.06GB | false | Extremely high quality, generally unneeded but max available quant. |
29
  | [Phi-3.5-mini-instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q6_K_L.gguf) | Q6_K_L | 3.18GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
30
  | [Phi-3.5-mini-instruct-Q6_K.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q6_K.gguf) | Q6_K | 3.14GB | false | Very high quality, near perfect, *recommended*. |
 
34
  | [Phi-3.5-mini-instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_K_L.gguf) | Q4_K_L | 2.47GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
35
  | [Phi-3.5-mini-instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_K_M.gguf) | Q4_K_M | 2.39GB | false | Good quality, default size for must use cases, *recommended*. |
36
  | [Phi-3.5-mini-instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_K_S.gguf) | Q4_K_S | 2.19GB | false | Slightly lower quality with more space savings, *recommended*. |
37
+ | [Phi-3.5-mini-instruct-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_0_8_8.gguf) | Q4_0_8_8 | 2.18GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). |
38
+ | [Phi-3.5-mini-instruct-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_0_4_8.gguf) | Q4_0_4_8 | 2.18GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). |
39
+ | [Phi-3.5-mini-instruct-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_0_4_4.gguf) | Q4_0_4_4 | 2.18GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. |
40
+ | [Phi-3.5-mini-instruct-Q4_0.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q4_0.gguf) | Q4_0 | 2.18GB | false | Legacy format, generally not worth using over similarly sized formats |
41
  | [Phi-3.5-mini-instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q3_K_XL.gguf) | Q3_K_XL | 2.17GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
42
  | [Phi-3.5-mini-instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-Q3_K_L.gguf) | Q3_K_L | 2.09GB | false | Lower quality but usable, good for low RAM availability. |
43
  | [Phi-3.5-mini-instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Phi-3.5-mini-instruct-GGUF/blob/main/Phi-3.5-mini-instruct-IQ4_XS.gguf) | IQ4_XS | 2.06GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
 
57
 
58
  Thanks!
59
 
 
 
 
 
 
 
60
  ## Downloading using huggingface-cli
61
 
62
  First, make sure you have hugginface-cli installed:
 
79
 
80
  You can either specify a new local-dir (Phi-3.5-mini-instruct-Q8_0) or download them all in place (./)
81
 
82
+ ## Q4_0_X_X
83
+
84
+ These are *NOT* for Metal (Apple) offloading, only ARM chips.
85
+
86
+ If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
87
+
88
+ To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!).
89
+
90
  ## Which file should I choose?
91
 
92
  A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
 
111
 
112
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
113
 
114
+ ## Credits
115
 
116
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
117
+
118
+ Thank you ZeroWw for the inspiration to experiment with embed/output
119
+
120
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski