GradientGuru
commited on
Upload folder using huggingface_hub
Browse files- config.json +56 -0
- configuration_baichuan.py +119 -0
- generation_config.json +14 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +370 -0
- modeling_baichuan.py +1197 -0
- special_tokens_map.json +46 -0
- tokenization_baichuan.py +231 -0
- tokenizer.model +3 -0
- tokenizer_config.json +389 -0
config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BaichuanM1ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_baichuan.BaichuanM1Config",
|
8 |
+
"AutoModelForCausalLM": "modeling_baichuan.BaichuanM1ForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"conv_window": 2,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 5120,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 17408,
|
17 |
+
"max_position_embeddings": 32768,
|
18 |
+
"model_max_length": 32768,
|
19 |
+
"model_type": "baichuan_m1",
|
20 |
+
"num_attention_heads": 20,
|
21 |
+
"num_hidden_layers": 40,
|
22 |
+
"num_key_value_heads": 2,
|
23 |
+
"num_swa_attention_heads": 40,
|
24 |
+
"num_swa_key_value_heads": 8,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"rms_norm_eps": 1e-06,
|
27 |
+
"rope_theta": 1000000.0,
|
28 |
+
"sliding_window": 8192,
|
29 |
+
"sliding_window_layers": [
|
30 |
+
1,
|
31 |
+
3,
|
32 |
+
5,
|
33 |
+
7,
|
34 |
+
9,
|
35 |
+
11,
|
36 |
+
13,
|
37 |
+
15,
|
38 |
+
17,
|
39 |
+
19,
|
40 |
+
21,
|
41 |
+
23,
|
42 |
+
25,
|
43 |
+
27,
|
44 |
+
29,
|
45 |
+
31,
|
46 |
+
33,
|
47 |
+
35,
|
48 |
+
37,
|
49 |
+
39
|
50 |
+
],
|
51 |
+
"tie_word_embeddings": false,
|
52 |
+
"torch_dtype": "bfloat16",
|
53 |
+
"transformers_version": "4.48.1",
|
54 |
+
"use_cache": true,
|
55 |
+
"vocab_size": 133120
|
56 |
+
}
|
configuration_baichuan.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from transformers import PretrainedConfig
|
16 |
+
from transformers.utils import logging
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class BaichuanM1Config(PretrainedConfig):
|
22 |
+
r"""
|
23 |
+
Configuration objects inherit from [`PretrainedConfig`] and control the behavior of model outputs. For more details,
|
24 |
+
refer to the documentation of [`PretrainedConfig`].
|
25 |
+
|
26 |
+
Args:
|
27 |
+
vocab_size (`int`, *optional*, defaults to 133120):
|
28 |
+
The size of the vocabulary used by the model.
|
29 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
30 |
+
The dimensionality of the hidden representations.
|
31 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
32 |
+
The dimensionality of the intermediate (MLP) representations.
|
33 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
34 |
+
The number of hidden layers in the Transformer encoder.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
36 |
+
The number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
38 |
+
The number of key-value heads used to implement Grouped Query Attention (GQA).
|
39 |
+
- If `num_key_value_heads == num_attention_heads`, the model uses Multi-Head Attention (MHA).
|
40 |
+
- If `num_key_value_heads == 1`, the model uses Multi-Query Attention (MQA).
|
41 |
+
- Otherwise, the model uses Grouped Query Attention (GQA).
|
42 |
+
When converting a multi-head checkpoint to a GQA checkpoint, each group's key and value heads are constructed
|
43 |
+
by mean-pooling the original heads within that group. For more details, refer to [this paper](https://arxiv.org/pdf/2305.13245.pdf).
|
44 |
+
If not specified, this defaults to `32`.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
46 |
+
The non-linear activation function (either a string or a callable function) used in the decoder.
|
47 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
48 |
+
The maximum sequence length the model can handle.
|
49 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
50 |
+
The standard deviation of the truncated normal initializer for initializing all weight matrices.
|
51 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
52 |
+
The epsilon value used by the RMS normalization layers.
|
53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether the model should return the last key/value attentions. This is only relevant if `config.is_decoder=True`.
|
55 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
56 |
+
Whether to tie the model's input and output word embeddings.
|
57 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
58 |
+
The base period of the Rotary Position Embeddings (RoPE).
|
59 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether to enable sliding window attention.
|
61 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
62 |
+
The size of the sliding window for sliding window attention (SWA). If not specified, it defaults to `2048`.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio applied to the attention probabilities.
|
65 |
+
"""
|
66 |
+
|
67 |
+
model_type = "baichuan"
|
68 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
69 |
+
|
70 |
+
def __init__(
|
71 |
+
self,
|
72 |
+
vocab_size=133120,
|
73 |
+
hidden_size=5120,
|
74 |
+
intermediate_size=17408,
|
75 |
+
num_hidden_layers=40,
|
76 |
+
num_attention_heads=40,
|
77 |
+
num_key_value_heads=2,
|
78 |
+
num_swa_attention_heads: int = 20,
|
79 |
+
num_swa_key_value_heads=8,
|
80 |
+
sliding_window_layers: list = None,
|
81 |
+
hidden_act="silu",
|
82 |
+
max_position_embeddings=32768,
|
83 |
+
initializer_range=0.02,
|
84 |
+
rms_norm_eps=1e-6,
|
85 |
+
use_cache=True,
|
86 |
+
tie_word_embeddings=False,
|
87 |
+
rope_theta=100000.0,
|
88 |
+
sliding_window=2048,
|
89 |
+
attention_dropout=0.0,
|
90 |
+
conv_window = 2,
|
91 |
+
**kwargs,
|
92 |
+
):
|
93 |
+
self.sliding_window_layers = sliding_window_layers
|
94 |
+
self.num_swa_key_value_heads = num_swa_key_value_heads
|
95 |
+
self.num_swa_attention_heads = num_swa_attention_heads
|
96 |
+
self.vocab_size = vocab_size
|
97 |
+
self.max_position_embeddings = max_position_embeddings
|
98 |
+
self.hidden_size = hidden_size
|
99 |
+
self.intermediate_size = intermediate_size
|
100 |
+
self.num_hidden_layers = num_hidden_layers
|
101 |
+
self.num_attention_heads = num_attention_heads
|
102 |
+
self.sliding_window = sliding_window
|
103 |
+
|
104 |
+
# for backward compatibility
|
105 |
+
if num_key_value_heads is None:
|
106 |
+
num_key_value_heads = num_attention_heads
|
107 |
+
|
108 |
+
self.num_key_value_heads = num_key_value_heads
|
109 |
+
self.hidden_act = hidden_act
|
110 |
+
self.initializer_range = initializer_range
|
111 |
+
self.rms_norm_eps = rms_norm_eps
|
112 |
+
self.use_cache = use_cache
|
113 |
+
self.rope_theta = rope_theta
|
114 |
+
self.attention_dropout = attention_dropout
|
115 |
+
self.conv_window = conv_window
|
116 |
+
super().__init__(
|
117 |
+
tie_word_embeddings=tie_word_embeddings,
|
118 |
+
**kwargs,
|
119 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"assistant_token_id": 74,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"max_new_tokens": 2048,
|
7 |
+
"pad_token_id": 0,
|
8 |
+
"repetition_penalty": 1.05,
|
9 |
+
"temperature": 0.3,
|
10 |
+
"top_k": 5,
|
11 |
+
"top_p": 0.85,
|
12 |
+
"transformers_version": "4.48.1",
|
13 |
+
"user_token_id": 73
|
14 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4877c584176284bd6fef77e51fbd2ef96c8b38852a1f08ac2cdc8ea46179a4c
|
3 |
+
size 4938901448
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d987caf8f98c6c4dedb8466840dd4fb76a615c7d831840e65d22276b33a66e85
|
3 |
+
size 4938965032
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96b9c39b7e87270ed12f2201118192c11149f9c8df7a649b4d0a334299cb7157
|
3 |
+
size 4886515392
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0c855b72caab92ee27789d09240551e5d3df8e4389c7c6d19e009cba841c5ff
|
3 |
+
size 4949450824
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0a66bd47f70c4752c32b3ae05563c62ad03a8627da0345cdd8953d244330927
|
3 |
+
size 4886515440
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:640fd7f8c27d6a8fb7c87b339d7f451075081c16b684f8b78d1dcb923a4c32f0
|
3 |
+
size 4341222272
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 28941528640
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.W_pack.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.conv_k": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.conv_v": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.self_attn.W_pack.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.self_attn.conv_k": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.conv_v": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.self_attn.W_pack.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.self_attn.conv_k": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.self_attn.conv_v": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.11.self_attn.W_pack.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.self_attn.conv_k": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.self_attn.conv_v": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.12.self_attn.W_pack.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.12.self_attn.conv_k": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.12.self_attn.conv_v": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
58 |
+
"model.layers.13.self_attn.W_pack.weight": "model-00003-of-00006.safetensors",
|
59 |
+
"model.layers.13.self_attn.conv_k": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.13.self_attn.conv_v": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
67 |
+
"model.layers.14.self_attn.W_pack.weight": "model-00003-of-00006.safetensors",
|
68 |
+
"model.layers.14.self_attn.conv_k": "model-00003-of-00006.safetensors",
|
69 |
+
"model.layers.14.self_attn.conv_v": "model-00003-of-00006.safetensors",
|
70 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.15.self_attn.W_pack.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.15.self_attn.conv_k": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.15.self_attn.conv_v": "model-00003-of-00006.safetensors",
|
79 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.16.self_attn.W_pack.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.16.self_attn.conv_k": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.16.self_attn.conv_v": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.17.self_attn.W_pack.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.17.self_attn.conv_k": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.17.self_attn.conv_v": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.18.self_attn.W_pack.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.18.self_attn.conv_k": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.18.self_attn.conv_v": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.19.self_attn.W_pack.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.19.self_attn.conv_k": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.19.self_attn.conv_v": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
121 |
+
"model.layers.2.self_attn.W_pack.weight": "model-00001-of-00006.safetensors",
|
122 |
+
"model.layers.2.self_attn.conv_k": "model-00001-of-00006.safetensors",
|
123 |
+
"model.layers.2.self_attn.conv_v": "model-00001-of-00006.safetensors",
|
124 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
130 |
+
"model.layers.20.self_attn.W_pack.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.20.self_attn.conv_k": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.20.self_attn.conv_v": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
139 |
+
"model.layers.21.self_attn.W_pack.weight": "model-00004-of-00006.safetensors",
|
140 |
+
"model.layers.21.self_attn.conv_k": "model-00004-of-00006.safetensors",
|
141 |
+
"model.layers.21.self_attn.conv_v": "model-00004-of-00006.safetensors",
|
142 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
148 |
+
"model.layers.22.self_attn.W_pack.weight": "model-00004-of-00006.safetensors",
|
149 |
+
"model.layers.22.self_attn.conv_k": "model-00004-of-00006.safetensors",
|
150 |
+
"model.layers.22.self_attn.conv_v": "model-00004-of-00006.safetensors",
|
151 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.23.self_attn.W_pack.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.23.self_attn.conv_k": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.23.self_attn.conv_v": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.24.self_attn.W_pack.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.24.self_attn.conv_k": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.24.self_attn.conv_v": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.25.self_attn.W_pack.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.25.self_attn.conv_k": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.25.self_attn.conv_v": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.26.self_attn.W_pack.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.26.self_attn.conv_k": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.26.self_attn.conv_v": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.27.self_attn.W_pack.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.27.self_attn.conv_k": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.27.self_attn.conv_v": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
202 |
+
"model.layers.28.self_attn.W_pack.weight": "model-00005-of-00006.safetensors",
|
203 |
+
"model.layers.28.self_attn.conv_k": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.28.self_attn.conv_v": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
211 |
+
"model.layers.29.self_attn.W_pack.weight": "model-00005-of-00006.safetensors",
|
212 |
+
"model.layers.29.self_attn.conv_k": "model-00005-of-00006.safetensors",
|
213 |
+
"model.layers.29.self_attn.conv_v": "model-00005-of-00006.safetensors",
|
214 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
220 |
+
"model.layers.3.self_attn.W_pack.weight": "model-00001-of-00006.safetensors",
|
221 |
+
"model.layers.3.self_attn.conv_k": "model-00001-of-00006.safetensors",
|
222 |
+
"model.layers.3.self_attn.conv_v": "model-00001-of-00006.safetensors",
|
223 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.30.self_attn.W_pack.weight": "model-00005-of-00006.safetensors",
|
230 |
+
"model.layers.30.self_attn.conv_k": "model-00005-of-00006.safetensors",
|
231 |
+
"model.layers.30.self_attn.conv_v": "model-00005-of-00006.safetensors",
|
232 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.31.self_attn.W_pack.weight": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.31.self_attn.conv_k": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.31.self_attn.conv_v": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.32.self_attn.W_pack.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.32.self_attn.conv_k": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.32.self_attn.conv_v": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.33.self_attn.W_pack.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.33.self_attn.conv_k": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.33.self_attn.conv_v": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.34.self_attn.W_pack.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.34.self_attn.conv_k": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.34.self_attn.conv_v": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
274 |
+
"model.layers.35.self_attn.W_pack.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.35.self_attn.conv_k": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.35.self_attn.conv_v": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
283 |
+
"model.layers.36.self_attn.W_pack.weight": "model-00006-of-00006.safetensors",
|
284 |
+
"model.layers.36.self_attn.conv_k": "model-00006-of-00006.safetensors",
|
285 |
+
"model.layers.36.self_attn.conv_v": "model-00006-of-00006.safetensors",
|
286 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
292 |
+
"model.layers.37.self_attn.W_pack.weight": "model-00006-of-00006.safetensors",
|
293 |
+
"model.layers.37.self_attn.conv_k": "model-00006-of-00006.safetensors",
|
294 |
+
"model.layers.37.self_attn.conv_v": "model-00006-of-00006.safetensors",
|
295 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
301 |
+
"model.layers.38.self_attn.W_pack.weight": "model-00006-of-00006.safetensors",
|
302 |
+
"model.layers.38.self_attn.conv_k": "model-00006-of-00006.safetensors",
|
303 |
+
"model.layers.38.self_attn.conv_v": "model-00006-of-00006.safetensors",
|
304 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
310 |
+
"model.layers.39.self_attn.W_pack.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"model.layers.39.self_attn.conv_k": "model-00006-of-00006.safetensors",
|
312 |
+
"model.layers.39.self_attn.conv_v": "model-00006-of-00006.safetensors",
|
313 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
319 |
+
"model.layers.4.self_attn.W_pack.weight": "model-00001-of-00006.safetensors",
|
320 |
+
"model.layers.4.self_attn.conv_k": "model-00001-of-00006.safetensors",
|
321 |
+
"model.layers.4.self_attn.conv_v": "model-00001-of-00006.safetensors",
|
322 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
328 |
+
"model.layers.5.self_attn.W_pack.weight": "model-00001-of-00006.safetensors",
|
329 |
+
"model.layers.5.self_attn.conv_k": "model-00001-of-00006.safetensors",
|
330 |
+
"model.layers.5.self_attn.conv_v": "model-00001-of-00006.safetensors",
|
331 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
337 |
+
"model.layers.6.self_attn.W_pack.weight": "model-00002-of-00006.safetensors",
|
338 |
+
"model.layers.6.self_attn.conv_k": "model-00002-of-00006.safetensors",
|
339 |
+
"model.layers.6.self_attn.conv_v": "model-00002-of-00006.safetensors",
|
340 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
346 |
+
"model.layers.7.self_attn.W_pack.weight": "model-00002-of-00006.safetensors",
|
347 |
+
"model.layers.7.self_attn.conv_k": "model-00002-of-00006.safetensors",
|
348 |
+
"model.layers.7.self_attn.conv_v": "model-00002-of-00006.safetensors",
|
349 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
355 |
+
"model.layers.8.self_attn.W_pack.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"model.layers.8.self_attn.conv_k": "model-00002-of-00006.safetensors",
|
357 |
+
"model.layers.8.self_attn.conv_v": "model-00002-of-00006.safetensors",
|
358 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"model.layers.9.self_attn.W_pack.weight": "model-00002-of-00006.safetensors",
|
365 |
+
"model.layers.9.self_attn.conv_k": "model-00002-of-00006.safetensors",
|
366 |
+
"model.layers.9.self_attn.conv_v": "model-00002-of-00006.safetensors",
|
367 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
369 |
+
}
|
370 |
+
}
|
modeling_baichuan.py
ADDED
@@ -0,0 +1,1197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
from typing import List, Optional, Tuple, Union, Dict, Any
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from einops import rearrange
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import CrossEntropyLoss
|
11 |
+
from transformers import add_start_docstrings, PreTrainedModel, DynamicCache, \
|
12 |
+
GenerationMixin, StaticCache, GenerationConfig
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
15 |
+
from transformers.modeling_flash_attention_utils import _flash_supports_window_size, \
|
16 |
+
_upad_input
|
17 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
18 |
+
from transformers.utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, \
|
19 |
+
add_start_docstrings_to_model_forward, is_torchdynamo_compiling, logging, \
|
20 |
+
is_flash_attn_greater_or_equal
|
21 |
+
|
22 |
+
if is_flash_attn_2_available():
|
23 |
+
from flash_attn.bert_padding import pad_input
|
24 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
25 |
+
from flash_attn.layers.rotary import apply_rotary_emb_func
|
26 |
+
from .configuration_baichuan import BaichuanM1Config
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class CustomCache(DynamicCache):
|
32 |
+
def __init__(self):
|
33 |
+
super().__init__()
|
34 |
+
self.past_len = []
|
35 |
+
|
36 |
+
def get_past_len(self, layer_idx: Optional[int] = 0) -> int:
|
37 |
+
if len(self.past_len) <= layer_idx:
|
38 |
+
return 0
|
39 |
+
return self.past_len[layer_idx]
|
40 |
+
|
41 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
42 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
43 |
+
# TODO: deprecate this function in favor of `cache_position`
|
44 |
+
if len(self.key_cache) <= layer_idx:
|
45 |
+
return 0
|
46 |
+
return self.key_cache[layer_idx].shape[1]
|
47 |
+
|
48 |
+
def update(
|
49 |
+
self,
|
50 |
+
key_states: torch.Tensor,
|
51 |
+
value_states: torch.Tensor,
|
52 |
+
layer_idx: int,
|
53 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
54 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
55 |
+
"""
|
56 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
57 |
+
|
58 |
+
Parameters:
|
59 |
+
key_states (`torch.Tensor`):
|
60 |
+
The new key states to cache.
|
61 |
+
value_states (`torch.Tensor`):
|
62 |
+
The new value states to cache.
|
63 |
+
layer_idx (`int`):
|
64 |
+
The index of the layer to cache the states for.
|
65 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
66 |
+
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
67 |
+
|
68 |
+
Return:
|
69 |
+
A tuple containing the updated key and value states.
|
70 |
+
"""
|
71 |
+
# Update the number of seen tokens
|
72 |
+
if layer_idx == 0:
|
73 |
+
self._seen_tokens += key_states.shape[1]
|
74 |
+
|
75 |
+
# Update the cache
|
76 |
+
if len(self.key_cache) <= layer_idx:
|
77 |
+
self.key_cache.append(key_states)
|
78 |
+
self.value_cache.append(value_states)
|
79 |
+
else:
|
80 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=1)
|
81 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=1)
|
82 |
+
|
83 |
+
if len(self.past_len) <= layer_idx:
|
84 |
+
self.past_len.append(key_states.shape[1])
|
85 |
+
else:
|
86 |
+
self.past_len[layer_idx] += key_states.shape[1]
|
87 |
+
|
88 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
89 |
+
|
90 |
+
|
91 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
92 |
+
attention_mask: torch.Tensor,
|
93 |
+
sequence_length: int,
|
94 |
+
target_length: int,
|
95 |
+
dtype: torch.dtype,
|
96 |
+
device: torch.device,
|
97 |
+
min_dtype: float,
|
98 |
+
cache_position: torch.Tensor,
|
99 |
+
batch_size: int,
|
100 |
+
):
|
101 |
+
"""
|
102 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
103 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
attention_mask (`torch.Tensor`):
|
107 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
108 |
+
sequence_length (`int`):
|
109 |
+
The sequence length being processed.
|
110 |
+
target_length (`int`):
|
111 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
112 |
+
dtype (`torch.dtype`):
|
113 |
+
The dtype to use for the 4D attention mask.
|
114 |
+
device (`torch.device`):
|
115 |
+
The device to plcae the 4D attention mask on.
|
116 |
+
min_dtype (`float`):
|
117 |
+
The minimum value representable with the dtype `dtype`.
|
118 |
+
cache_position (`torch.Tensor`):
|
119 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
120 |
+
batch_size (`torch.Tensor`):
|
121 |
+
Batch size.
|
122 |
+
"""
|
123 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
124 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
125 |
+
causal_mask = attention_mask
|
126 |
+
else:
|
127 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
128 |
+
if sequence_length != 1:
|
129 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
130 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
131 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
132 |
+
if attention_mask is not None:
|
133 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
134 |
+
mask_length = attention_mask.shape[-1]
|
135 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
136 |
+
padding_mask = padding_mask == 0
|
137 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
138 |
+
padding_mask, min_dtype
|
139 |
+
)
|
140 |
+
|
141 |
+
return causal_mask
|
142 |
+
|
143 |
+
|
144 |
+
class BaichuanRMSNorm(nn.Module):
|
145 |
+
def __init__(self, hidden_size, eps=1e-6):
|
146 |
+
"""
|
147 |
+
RMSNorm is equivalent to T5LayerNorm
|
148 |
+
"""
|
149 |
+
super().__init__()
|
150 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
151 |
+
self.variance_epsilon = eps
|
152 |
+
|
153 |
+
def forward(self, hidden_states):
|
154 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
155 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
156 |
+
|
157 |
+
# convert into half-precision if necessary
|
158 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
159 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
160 |
+
|
161 |
+
return self.weight * hidden_states
|
162 |
+
|
163 |
+
|
164 |
+
class RotaryEmbedding(torch.nn.Module):
|
165 |
+
def __init__(self, dim, max_position_embeddings=2048, base=1e5, device=None, interleaved=False):
|
166 |
+
super().__init__()
|
167 |
+
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
168 |
+
self.base = base
|
169 |
+
self.dim = dim
|
170 |
+
# Build here to make `torch.jit.trace` work.
|
171 |
+
self.max_seq_len_cached = 0
|
172 |
+
self.interleaved = interleaved
|
173 |
+
|
174 |
+
def forward(self, q, k, seqlen_offset=None, cu_seqlens=None, max_seqlen=None):
|
175 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
176 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
177 |
+
seq_len_dim = 1
|
178 |
+
seq_len = q.shape[seq_len_dim] + seqlen_offset
|
179 |
+
if seq_len > self.max_seq_len_cached:
|
180 |
+
self.max_seq_len_cached = seq_len
|
181 |
+
self.inv_freq = 1.0 / (
|
182 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(self.inv_freq.device) / self.dim))
|
183 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
184 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq) # dont use this, bug in fp16
|
185 |
+
freqs = torch.outer(t, self.inv_freq)
|
186 |
+
self.cos_cached = freqs.cos().to(q.device)
|
187 |
+
self.sin_cached = freqs.sin().to(k.device)
|
188 |
+
q_ori_size = q.size()
|
189 |
+
k_ori_size = k.size()
|
190 |
+
if cu_seqlens is not None:
|
191 |
+
q = flatten_one_dim(q)
|
192 |
+
k = flatten_one_dim(k)
|
193 |
+
q_new = apply_rotary_emb_func(
|
194 |
+
q.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:],
|
195 |
+
self.interleaved, True, # inplace=True
|
196 |
+
cu_seqlens=cu_seqlens,
|
197 |
+
max_seqlen=max_seqlen
|
198 |
+
).to(q.dtype)
|
199 |
+
k_new = apply_rotary_emb_func(
|
200 |
+
k.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:],
|
201 |
+
self.interleaved, True,
|
202 |
+
cu_seqlens=cu_seqlens,
|
203 |
+
max_seqlen=max_seqlen
|
204 |
+
).to(k.dtype)
|
205 |
+
if cu_seqlens is not None:
|
206 |
+
q_new = q_new.reshape(*q_ori_size)
|
207 |
+
k_new = k_new.reshape(*k_ori_size)
|
208 |
+
return q_new, k_new
|
209 |
+
|
210 |
+
|
211 |
+
class BaichuanMLP(nn.Module):
|
212 |
+
def __init__(self, config):
|
213 |
+
super().__init__()
|
214 |
+
self.hidden_size = config.hidden_size
|
215 |
+
self.intermediate_size = config.intermediate_size
|
216 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
217 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
218 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
219 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
220 |
+
|
221 |
+
def forward(self, hidden_state):
|
222 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
223 |
+
|
224 |
+
|
225 |
+
class BaichuanAttention(nn.Module):
|
226 |
+
"""
|
227 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
228 |
+
and "Generating Long Sequences with Sparse Transformers".
|
229 |
+
"""
|
230 |
+
|
231 |
+
def __init__(self, config: BaichuanM1Config, layer_idx: Optional[int] = None):
|
232 |
+
super().__init__()
|
233 |
+
self.config = config
|
234 |
+
self.layer_idx = layer_idx
|
235 |
+
if layer_idx is None:
|
236 |
+
raise ValueError(
|
237 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
238 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
239 |
+
"when creating this class."
|
240 |
+
)
|
241 |
+
|
242 |
+
self.hidden_size = config.hidden_size
|
243 |
+
self.is_swa = layer_idx in self.config.sliding_window_layers
|
244 |
+
self.num_heads = config.num_swa_attention_heads if self.is_swa else config.num_attention_heads
|
245 |
+
self.head_dim = self.hidden_size // self.num_heads
|
246 |
+
self.num_key_value_heads = config.num_swa_key_value_heads if self.is_swa else config.num_key_value_heads
|
247 |
+
self.max_position_embeddings = config.max_position_embeddings
|
248 |
+
self.rope_theta = config.rope_theta
|
249 |
+
self.is_causal = True
|
250 |
+
self.attention_dropout = config.attention_dropout
|
251 |
+
|
252 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
253 |
+
raise ValueError(
|
254 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
255 |
+
f" and `num_heads`: {self.num_heads})."
|
256 |
+
)
|
257 |
+
self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim,
|
258 |
+
bias=False)
|
259 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
260 |
+
|
261 |
+
self.rotary_emb = RotaryEmbedding(dim=self.head_dim, base=self.config.rope_theta,
|
262 |
+
max_position_embeddings=self.config.max_position_embeddings)
|
263 |
+
self.conv_window = config.conv_window
|
264 |
+
assert self.conv_window == 2 #%% Currently, only supported window=2 when inference
|
265 |
+
self.conv_k = nn.Parameter(torch.softmax(torch.randn((1, 1, self.num_key_value_heads, 1, self.conv_window)), dim=-1))
|
266 |
+
self.conv_v = nn.Parameter(torch.softmax(torch.randn((1, 1, self.num_key_value_heads, 1, self.conv_window)), dim=-1))
|
267 |
+
self.last_k, self.last_v = None, None
|
268 |
+
|
269 |
+
|
270 |
+
def get_max_seqlen(cu_seqlens):
|
271 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
272 |
+
return max_seqlen
|
273 |
+
|
274 |
+
|
275 |
+
def flatten_one_dim(tensor):
|
276 |
+
tensor = tensor.view(-1, tensor.size(-2), tensor.size(-1))
|
277 |
+
return tensor
|
278 |
+
|
279 |
+
|
280 |
+
def prepare_for_flash_attention_varlen(query, key, value, cu_seqlens):
|
281 |
+
query = query.view(-1, query.size(-2), query.size(-1))
|
282 |
+
key = key.view(-1, key.size(-2), key.size(-1))
|
283 |
+
value = value.view(-1, value.size(-2), value.size(-1))
|
284 |
+
return query, key, value, get_max_seqlen(cu_seqlens)
|
285 |
+
|
286 |
+
|
287 |
+
def flash_attention_forward(
|
288 |
+
query_states: torch.Tensor,
|
289 |
+
key_states: torch.Tensor,
|
290 |
+
value_states: torch.Tensor,
|
291 |
+
query_length: int,
|
292 |
+
is_causal: bool,
|
293 |
+
dropout: float = 0.0,
|
294 |
+
attention_mask: Optional[torch.Tensor] = None,
|
295 |
+
position_ids: Optional[torch.Tensor] = None,
|
296 |
+
seqlens: Optional[torch.LongTensor] = None,
|
297 |
+
softmax_scale: Optional[float] = None,
|
298 |
+
sliding_window: Optional[int] = None,
|
299 |
+
use_top_left_mask: bool = False,
|
300 |
+
softcap: Optional[float] = None,
|
301 |
+
deterministic: bool = None,
|
302 |
+
):
|
303 |
+
"""
|
304 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
305 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
query_states (`torch.Tensor`):
|
309 |
+
Input query states to be passed to Flash Attention API
|
310 |
+
key_states (`torch.Tensor`):
|
311 |
+
Input key states to be passed to Flash Attention API
|
312 |
+
value_states (`torch.Tensor`):
|
313 |
+
Input value states to be passed to Flash Attention API
|
314 |
+
attention_mask (`torch.Tensor`):
|
315 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
316 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
317 |
+
dropout (`float`):
|
318 |
+
Attention dropout
|
319 |
+
softmax_scale (`float`, *optional*):
|
320 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
321 |
+
use_top_left_mask (`bool`, defaults to `False`):
|
322 |
+
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
323 |
+
softcap (`float`, *optional*):
|
324 |
+
Softcap for the attention logits, used e.g. in gemma2.
|
325 |
+
deterministic (`bool`, *optional*):
|
326 |
+
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
|
327 |
+
"""
|
328 |
+
if not use_top_left_mask:
|
329 |
+
causal = is_causal
|
330 |
+
else:
|
331 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. .
|
332 |
+
causal = is_causal and query_length != 1
|
333 |
+
|
334 |
+
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
|
335 |
+
use_sliding_windows = (
|
336 |
+
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
|
337 |
+
)
|
338 |
+
flash_kwargs = {"window_size": (sliding_window - 1, 0)} if use_sliding_windows else {}
|
339 |
+
|
340 |
+
if is_flash_attn_greater_or_equal("2.4.1"):
|
341 |
+
if deterministic is None:
|
342 |
+
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
|
343 |
+
flash_kwargs["deterministic"] = deterministic
|
344 |
+
|
345 |
+
if softcap is not None:
|
346 |
+
flash_kwargs["softcap"] = softcap
|
347 |
+
# Contains at least one padding token in the sequence
|
348 |
+
if seqlens is not None:
|
349 |
+
batch_size = query_states.shape[0]
|
350 |
+
query_states, key_states, value_states, max_seqlen = prepare_for_flash_attention_varlen(query_states,
|
351 |
+
key_states,
|
352 |
+
value_states, seqlens)
|
353 |
+
attn_output = flash_attn_varlen_func(
|
354 |
+
query_states,
|
355 |
+
key_states,
|
356 |
+
value_states,
|
357 |
+
cu_seqlens_q=seqlens,
|
358 |
+
cu_seqlens_k=seqlens,
|
359 |
+
max_seqlen_q=max_seqlen,
|
360 |
+
max_seqlen_k=max_seqlen,
|
361 |
+
dropout_p=dropout,
|
362 |
+
softmax_scale=softmax_scale,
|
363 |
+
causal=causal,
|
364 |
+
**flash_kwargs,
|
365 |
+
)
|
366 |
+
|
367 |
+
attn_output = attn_output.reshape(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
|
368 |
+
|
369 |
+
elif attention_mask is not None:
|
370 |
+
batch_size = query_states.shape[0]
|
371 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
|
372 |
+
query_states, key_states, value_states, attention_mask, query_length
|
373 |
+
)
|
374 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
375 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
376 |
+
attn_output_unpad = flash_attn_varlen_func(
|
377 |
+
query_states,
|
378 |
+
key_states,
|
379 |
+
value_states,
|
380 |
+
cu_seqlens_q=cu_seqlens_q,
|
381 |
+
cu_seqlens_k=cu_seqlens_k,
|
382 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
383 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
384 |
+
dropout_p=dropout,
|
385 |
+
softmax_scale=softmax_scale,
|
386 |
+
causal=causal,
|
387 |
+
**flash_kwargs,
|
388 |
+
)
|
389 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
390 |
+
|
391 |
+
else:
|
392 |
+
attn_output = flash_attn_func(
|
393 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
|
394 |
+
)
|
395 |
+
|
396 |
+
return attn_output
|
397 |
+
|
398 |
+
|
399 |
+
def custom_convolution(U, K):
|
400 |
+
"""
|
401 |
+
U: Input matrix, shape (bs, seq, h, d)
|
402 |
+
K: Convolution kernel, shape (w, h)
|
403 |
+
Returns: Output matrix V, shape (bs, seq, h, d)
|
404 |
+
"""
|
405 |
+
# h, w = K.shape
|
406 |
+
w = K.size(-1)
|
407 |
+
padding = (w - 1, 0)
|
408 |
+
U_padded = F.pad(U, (0, 0, 0, 0, *padding)) # Shape becomes (bs, seq+w-1, h, d)
|
409 |
+
U_unfolded = U_padded.unfold(1, w, 1) # Shape becomes (bs, seq+w-1, h, d, w)
|
410 |
+
V_unfolded = U_unfolded * K # Shape remains (bs, seq, h, d, w)
|
411 |
+
V = V_unfolded.sum(dim=-1) # Shape becomes (bs, seq, h, d)
|
412 |
+
return V
|
413 |
+
|
414 |
+
|
415 |
+
def custom_convolution_with_splits(U, K, cu_seqlens):
|
416 |
+
"""
|
417 |
+
U: Input matrix, shape (bs, seq, h, d)
|
418 |
+
K: Convolution kernel, shape (w, h)
|
419 |
+
cu_seqlens: Cumulative sequence lengths, indicating how to split the input.
|
420 |
+
Returns: Output matrix, shape (bs, seq, h, d)
|
421 |
+
"""
|
422 |
+
ori_shape = U.size() # Save the original shape of U
|
423 |
+
# Flatten U to handle variable-length sequences
|
424 |
+
U_flatten = U.reshape(1, -1, ori_shape[-2], ori_shape[-1]) # Shape: (1, total_seq, h, d)
|
425 |
+
|
426 |
+
# Perform convolution on each subsequence separately
|
427 |
+
V_parts = [] # Store the results of each subsequence
|
428 |
+
start = 0 # Start index of the current subsequence
|
429 |
+
for end in cu_seqlens[1:]:
|
430 |
+
end = end.item() # Convert scalar tensor to int
|
431 |
+
U_part = U_flatten[:, start:end, :, :] # Slice the subsequence (1, seq_sub, h, d)
|
432 |
+
V_part = custom_convolution(U_part, K) # Apply custom convolution
|
433 |
+
V_parts.append(V_part) # Append the result
|
434 |
+
start = end # Update the start index for the next subsequence
|
435 |
+
|
436 |
+
# Concatenate the results along the sequence dimension
|
437 |
+
V = torch.cat(V_parts, dim=1).to(U) # Shape: (1, total_seq, h, d)
|
438 |
+
|
439 |
+
# Reshape the output to match the original input shape
|
440 |
+
return V.reshape(ori_shape)
|
441 |
+
|
442 |
+
|
443 |
+
class BaichuanFlashAttention2(BaichuanAttention):
|
444 |
+
"""
|
445 |
+
Baichuan flash attention module, following Baichuan attention module. This module inherits from `BaichuanAttention`
|
446 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
447 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
448 |
+
in case the input contains any of them.
|
449 |
+
"""
|
450 |
+
|
451 |
+
def __init__(self, *args, **kwargs):
|
452 |
+
super().__init__(*args, **kwargs)
|
453 |
+
|
454 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
455 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
456 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
457 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
458 |
+
|
459 |
+
def forward(
|
460 |
+
self,
|
461 |
+
hidden_states: torch.Tensor,
|
462 |
+
attention_mask: Optional[torch.Tensor] = None,
|
463 |
+
position_ids: Optional[torch.LongTensor] = None,
|
464 |
+
seqlens: Optional[torch.LongTensor] = None,
|
465 |
+
past_key_value: Optional[CustomCache] = None,
|
466 |
+
output_attentions: bool = False,
|
467 |
+
use_cache: bool = False,
|
468 |
+
cache_position: Optional[torch.LongTensor] = None,
|
469 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
470 |
+
):
|
471 |
+
|
472 |
+
bsz, q_len, _ = hidden_states.size()
|
473 |
+
proj = self.W_pack(hidden_states)
|
474 |
+
proj = rearrange(proj, 'bs seq_len (n_head head_dim) -> n_head bs seq_len head_dim', head_dim=self.head_dim)
|
475 |
+
query_states = rearrange(proj[:self.num_heads], 'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
|
476 |
+
key_states = rearrange(proj[self.num_heads:self.num_heads + self.num_key_value_heads],
|
477 |
+
'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
|
478 |
+
value_states = rearrange(proj[self.num_heads + self.num_key_value_heads:],
|
479 |
+
'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
|
480 |
+
|
481 |
+
|
482 |
+
if past_key_value is None or past_key_value.get_seq_length(self.layer_idx) == 0:# prefill
|
483 |
+
if not self.training:
|
484 |
+
self.last_k = key_states[:, -1:]
|
485 |
+
self.last_v = value_states[:, -1:]
|
486 |
+
if seqlens is None:
|
487 |
+
key_states = custom_convolution(key_states, self.conv_k)
|
488 |
+
value_states = custom_convolution(value_states, self.conv_v)
|
489 |
+
else:
|
490 |
+
assert seqlens.ndim==1
|
491 |
+
key_states=custom_convolution_with_splits(key_states,self.conv_k,seqlens)
|
492 |
+
value_states=custom_convolution_with_splits(value_states,self.conv_v,seqlens)
|
493 |
+
else: # decode
|
494 |
+
self.last_k, key_states = key_states, self.conv_k[0, 0, :, 0, :1] * self.last_k + self.conv_k[0, 0, :, 0, 1:] * key_states
|
495 |
+
self.last_v, value_states = value_states, self.conv_v[0, 0, :, 0, :1] * self.last_v + self.conv_v[0, 0, :, 0, 1:] * value_states
|
496 |
+
if seqlens is not None:
|
497 |
+
max_seqlen = get_max_seqlen(seqlens)
|
498 |
+
else:
|
499 |
+
max_seqlen = None
|
500 |
+
|
501 |
+
past_len = past_key_value.get_past_len(self.layer_idx) if past_key_value is not None else 0
|
502 |
+
query_states, key_states = self.rotary_emb(
|
503 |
+
query_states,
|
504 |
+
key_states,
|
505 |
+
seqlen_offset=past_len,
|
506 |
+
cu_seqlens=seqlens,
|
507 |
+
max_seqlen=max_seqlen
|
508 |
+
)
|
509 |
+
|
510 |
+
if past_key_value is not None:
|
511 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
512 |
+
kv_seq_len = key_states.shape[1] + past_key_value.get_seq_length(self.layer_idx)
|
513 |
+
if (
|
514 |
+
self.is_swa
|
515 |
+
and kv_seq_len > self.config.sliding_window
|
516 |
+
and cache_has_contents
|
517 |
+
):
|
518 |
+
slicing_tokens = 1 - self.config.sliding_window
|
519 |
+
past_key = past_key_value[self.layer_idx][0]
|
520 |
+
past_value = past_key_value[self.layer_idx][1]
|
521 |
+
|
522 |
+
past_key_value.key_cache[self.layer_idx] = past_key[:, slicing_tokens:, :, :].contiguous()
|
523 |
+
past_key_value.value_cache[self.layer_idx] = past_value[:, slicing_tokens:, :, :].contiguous()
|
524 |
+
|
525 |
+
if past_key_value[self.layer_idx][0].shape[1] != self.config.sliding_window - 1:
|
526 |
+
raise ValueError(
|
527 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
528 |
+
f" {past_key.shape}"
|
529 |
+
)
|
530 |
+
|
531 |
+
# if attention_mask is not None:
|
532 |
+
# # TODO: not check!!
|
533 |
+
# attention_mask = attention_mask[:, slicing_tokens:]
|
534 |
+
# attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
535 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
536 |
+
|
537 |
+
input_dtype = query_states.dtype
|
538 |
+
if input_dtype == torch.float32:
|
539 |
+
if torch.is_autocast_enabled():
|
540 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
541 |
+
# Handle the case where the model is quantized
|
542 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
543 |
+
target_dtype = self.config._pre_quantization_dtype
|
544 |
+
else:
|
545 |
+
target_dtype = self.q_proj.weight.dtype
|
546 |
+
|
547 |
+
logger.warning_once(
|
548 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
549 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
550 |
+
f" {target_dtype}."
|
551 |
+
)
|
552 |
+
|
553 |
+
query_states = query_states.to(target_dtype)
|
554 |
+
key_states = key_states.to(target_dtype)
|
555 |
+
value_states = value_states.to(target_dtype)
|
556 |
+
|
557 |
+
if self.is_swa:
|
558 |
+
sliding_window = self.config.sliding_window
|
559 |
+
else:
|
560 |
+
sliding_window = None
|
561 |
+
attn_output = flash_attention_forward(
|
562 |
+
query_states,
|
563 |
+
key_states,
|
564 |
+
value_states,
|
565 |
+
query_length=q_len,
|
566 |
+
position_ids=position_ids,
|
567 |
+
seqlens=seqlens,
|
568 |
+
sliding_window=sliding_window,
|
569 |
+
is_causal=self.is_causal,
|
570 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
571 |
+
)
|
572 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
573 |
+
attn_output = self.o_proj(attn_output)
|
574 |
+
|
575 |
+
if not output_attentions:
|
576 |
+
attn_weights = None
|
577 |
+
|
578 |
+
return attn_output, attn_weights, past_key_value
|
579 |
+
|
580 |
+
|
581 |
+
Baichuan_ATTENTION_CLASSES = {
|
582 |
+
"eager": BaichuanAttention,
|
583 |
+
"flash_attention_2": BaichuanFlashAttention2,
|
584 |
+
}
|
585 |
+
|
586 |
+
|
587 |
+
class BaichuanDecoderLayer(nn.Module):
|
588 |
+
def __init__(self, config: BaichuanM1Config, layer_idx: int):
|
589 |
+
super().__init__()
|
590 |
+
self.hidden_size = config.hidden_size
|
591 |
+
self.layer_idx = layer_idx
|
592 |
+
self.self_attn = Baichuan_ATTENTION_CLASSES['flash_attention_2'](config, layer_idx)
|
593 |
+
|
594 |
+
self.mlp = BaichuanMLP(config)
|
595 |
+
self.input_layernorm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
596 |
+
self.post_attention_layernorm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
597 |
+
|
598 |
+
def forward(
|
599 |
+
self,
|
600 |
+
hidden_states: torch.Tensor,
|
601 |
+
attention_mask: Optional[torch.Tensor] = None,
|
602 |
+
position_ids: Optional[torch.LongTensor] = None,
|
603 |
+
seqlens: Optional[torch.LongTensor] = None,
|
604 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
605 |
+
output_attentions: Optional[bool] = False,
|
606 |
+
use_cache: Optional[bool] = False,
|
607 |
+
cache_position: Optional[torch.LongTensor] = None,
|
608 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
609 |
+
**kwargs,
|
610 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
611 |
+
"""
|
612 |
+
Args:
|
613 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
614 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
615 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
616 |
+
output_attentions (`bool`, *optional*):
|
617 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
618 |
+
returned tensors for more detail.
|
619 |
+
use_cache (`bool`, *optional*):
|
620 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
621 |
+
(see `past_key_values`).
|
622 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
623 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
624 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
625 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
626 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
627 |
+
with `head_dim` being the embedding dimension of each attention head.
|
628 |
+
kwargs (`dict`, *optional*):
|
629 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
630 |
+
into the model
|
631 |
+
"""
|
632 |
+
|
633 |
+
residual = hidden_states
|
634 |
+
|
635 |
+
hidden_states = self.input_layernorm(hidden_states)
|
636 |
+
|
637 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
638 |
+
hidden_states=hidden_states,
|
639 |
+
attention_mask=attention_mask,
|
640 |
+
position_ids=position_ids,
|
641 |
+
seqlens=seqlens,
|
642 |
+
past_key_value=past_key_value,
|
643 |
+
output_attentions=output_attentions,
|
644 |
+
use_cache=use_cache,
|
645 |
+
cache_position=cache_position,
|
646 |
+
position_embeddings=position_embeddings,
|
647 |
+
)
|
648 |
+
hidden_states = residual + hidden_states
|
649 |
+
|
650 |
+
# Fully Connected
|
651 |
+
residual = hidden_states
|
652 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
653 |
+
hidden_states = self.mlp(hidden_states)
|
654 |
+
hidden_states = residual + hidden_states
|
655 |
+
|
656 |
+
outputs = (hidden_states,)
|
657 |
+
|
658 |
+
if output_attentions:
|
659 |
+
outputs += (self_attn_weights,)
|
660 |
+
|
661 |
+
if use_cache:
|
662 |
+
outputs += (present_key_value,)
|
663 |
+
return outputs
|
664 |
+
|
665 |
+
|
666 |
+
Baichuan_START_DOCSTRING = r"""
|
667 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
668 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
669 |
+
etc.)
|
670 |
+
|
671 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
672 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
673 |
+
and behavior.
|
674 |
+
|
675 |
+
Parameters:
|
676 |
+
config ([`BaichuanM1Config`]):
|
677 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
678 |
+
load the weights associated with the model, only the configuration. Check out the
|
679 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
680 |
+
"""
|
681 |
+
|
682 |
+
|
683 |
+
@add_start_docstrings(
|
684 |
+
"The bare Bai chuan Model outputting raw hidden-states without any specific head on top.",
|
685 |
+
Baichuan_START_DOCSTRING,
|
686 |
+
)
|
687 |
+
class BaichuanPreTrainedModel(PreTrainedModel):
|
688 |
+
config_class = BaichuanM1Config
|
689 |
+
base_model_prefix = "model"
|
690 |
+
supports_gradient_checkpointing = True
|
691 |
+
_no_split_modules = ["BaichuanDecoderLayer"]
|
692 |
+
_skip_keys_device_placement = "past_key_values"
|
693 |
+
_supports_flash_attn_2 = True
|
694 |
+
_supports_sdpa = True
|
695 |
+
_supports_cache_class = True
|
696 |
+
_supports_quantized_cache = True
|
697 |
+
_supports_static_cache = True
|
698 |
+
|
699 |
+
def _init_weights(self, module):
|
700 |
+
std = self.config.initializer_range
|
701 |
+
if isinstance(module, nn.Linear):
|
702 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
703 |
+
if module.bias is not None:
|
704 |
+
module.bias.data.zero_()
|
705 |
+
elif isinstance(module, nn.Embedding):
|
706 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
707 |
+
if module.padding_idx is not None:
|
708 |
+
module.weight.data[module.padding_idx].zero_()
|
709 |
+
|
710 |
+
|
711 |
+
Baichuan_INPUTS_DOCSTRING = r"""
|
712 |
+
|
713 |
+
"""
|
714 |
+
|
715 |
+
|
716 |
+
@add_start_docstrings(
|
717 |
+
"The bare Baichuan Model outputting raw hidden-states without any specific head on top.",
|
718 |
+
Baichuan_START_DOCSTRING,
|
719 |
+
)
|
720 |
+
class BaichuanModel(BaichuanPreTrainedModel):
|
721 |
+
"""
|
722 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BaichuanDecoderLayer`]
|
723 |
+
|
724 |
+
Args:
|
725 |
+
config: BaichuanM1Config
|
726 |
+
"""
|
727 |
+
|
728 |
+
def __init__(self, config: BaichuanM1Config):
|
729 |
+
super().__init__(config)
|
730 |
+
self.padding_idx = config.pad_token_id
|
731 |
+
self.vocab_size = config.vocab_size
|
732 |
+
|
733 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
734 |
+
self.layers = nn.ModuleList(
|
735 |
+
[BaichuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
736 |
+
)
|
737 |
+
self._attn_implementation = config._attn_implementation
|
738 |
+
self.norm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
739 |
+
|
740 |
+
self.gradient_checkpointing = True
|
741 |
+
# Initialize weights and apply final processing
|
742 |
+
self.post_init()
|
743 |
+
|
744 |
+
def get_input_embeddings(self):
|
745 |
+
return self.embed_tokens
|
746 |
+
|
747 |
+
def set_input_embeddings(self, value):
|
748 |
+
self.embed_tokens = value
|
749 |
+
|
750 |
+
@add_start_docstrings_to_model_forward(Baichuan_INPUTS_DOCSTRING)
|
751 |
+
def forward(
|
752 |
+
self,
|
753 |
+
input_ids: torch.LongTensor = None,
|
754 |
+
attention_mask: Optional[torch.Tensor] = None,
|
755 |
+
position_ids: Optional[torch.LongTensor] = None,
|
756 |
+
seqlens: Optional[torch.LongTensor] = None,
|
757 |
+
past_key_values: Optional[CustomCache] = None,
|
758 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
759 |
+
use_cache: Optional[bool] = None,
|
760 |
+
output_attentions: Optional[bool] = None,
|
761 |
+
output_hidden_states: Optional[bool] = None,
|
762 |
+
return_dict: Optional[bool] = None,
|
763 |
+
cache_position: Optional[torch.LongTensor] = None,
|
764 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
765 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
766 |
+
output_hidden_states = (
|
767 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
768 |
+
)
|
769 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
770 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
771 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
772 |
+
raise ValueError(
|
773 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
774 |
+
)
|
775 |
+
|
776 |
+
if self.gradient_checkpointing and self.training:
|
777 |
+
if use_cache:
|
778 |
+
logger.warning_once(
|
779 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
780 |
+
)
|
781 |
+
use_cache = False
|
782 |
+
|
783 |
+
if seqlens is not None:
|
784 |
+
assert seqlens.ndim == 2
|
785 |
+
# batch multi-pack 样本拉平
|
786 |
+
cu_seqlens = []
|
787 |
+
offset, seqlen = 0, seqlens.size(1)
|
788 |
+
for lens in seqlens:
|
789 |
+
cu_seqlens.append(offset)
|
790 |
+
cu_seqlens.extend((lens[(lens > 0) & (lens < seqlen)] + offset).tolist())
|
791 |
+
offset += seqlen
|
792 |
+
cu_seqlens.append(offset)
|
793 |
+
seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=input_ids.device)
|
794 |
+
# unset attention_mask to save memory
|
795 |
+
attention_mask = None
|
796 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
797 |
+
return_legacy_cache = False
|
798 |
+
if use_cache and not isinstance(past_key_values, CustomCache):
|
799 |
+
return_legacy_cache = False
|
800 |
+
if past_key_values is None:
|
801 |
+
past_key_values = CustomCache()
|
802 |
+
else:
|
803 |
+
past_key_values = CustomCache.from_legacy_cache(past_key_values)
|
804 |
+
logger.warning_once(
|
805 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
806 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
807 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
808 |
+
)
|
809 |
+
if inputs_embeds is None:
|
810 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
811 |
+
|
812 |
+
if cache_position is None:
|
813 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
814 |
+
cache_position = torch.arange(
|
815 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
816 |
+
)
|
817 |
+
if position_ids is None:
|
818 |
+
position_ids = cache_position.unsqueeze(0)
|
819 |
+
|
820 |
+
causal_mask = self._update_causal_mask(
|
821 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
822 |
+
)
|
823 |
+
|
824 |
+
hidden_states = inputs_embeds
|
825 |
+
|
826 |
+
# create position embeddings to be shared across the decoder layers
|
827 |
+
# position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
828 |
+
position_embeddings = None
|
829 |
+
|
830 |
+
# decoder layers
|
831 |
+
all_hidden_states = () if output_hidden_states else None
|
832 |
+
all_self_attns = () if output_attentions else None
|
833 |
+
next_decoder_cache = None
|
834 |
+
|
835 |
+
for decoder_layer in self.layers:
|
836 |
+
if output_hidden_states:
|
837 |
+
all_hidden_states += (hidden_states,)
|
838 |
+
if self.gradient_checkpointing and self.training:
|
839 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
840 |
+
decoder_layer,
|
841 |
+
hidden_states,
|
842 |
+
causal_mask,
|
843 |
+
position_ids,
|
844 |
+
seqlens,
|
845 |
+
past_key_values,
|
846 |
+
output_attentions,
|
847 |
+
use_cache,
|
848 |
+
cache_position,
|
849 |
+
position_embeddings,
|
850 |
+
)
|
851 |
+
else:
|
852 |
+
layer_outputs = decoder_layer(
|
853 |
+
hidden_states,
|
854 |
+
attention_mask=causal_mask,
|
855 |
+
position_ids=position_ids,
|
856 |
+
seqlens=seqlens,
|
857 |
+
past_key_value=past_key_values,
|
858 |
+
output_attentions=output_attentions,
|
859 |
+
use_cache=use_cache,
|
860 |
+
cache_position=cache_position,
|
861 |
+
position_embeddings=position_embeddings,
|
862 |
+
)
|
863 |
+
|
864 |
+
hidden_states = layer_outputs[0]
|
865 |
+
if use_cache:
|
866 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
867 |
+
|
868 |
+
if output_attentions:
|
869 |
+
all_self_attns += (layer_outputs[1],)
|
870 |
+
|
871 |
+
hidden_states = self.norm(hidden_states)
|
872 |
+
|
873 |
+
# add hidden states from the last decoder layer
|
874 |
+
if output_hidden_states:
|
875 |
+
all_hidden_states += (hidden_states,)
|
876 |
+
|
877 |
+
next_cache = next_decoder_cache if use_cache else None
|
878 |
+
if return_legacy_cache:
|
879 |
+
next_cache = next_cache.to_legacy_cache()
|
880 |
+
if not return_dict:
|
881 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
882 |
+
return BaseModelOutputWithPast(
|
883 |
+
last_hidden_state=hidden_states,
|
884 |
+
past_key_values=next_cache,
|
885 |
+
hidden_states=all_hidden_states,
|
886 |
+
attentions=all_self_attns,
|
887 |
+
)
|
888 |
+
|
889 |
+
|
890 |
+
def _update_causal_mask(
|
891 |
+
self,
|
892 |
+
attention_mask: torch.Tensor,
|
893 |
+
input_tensor: torch.Tensor,
|
894 |
+
cache_position: torch.Tensor,
|
895 |
+
past_key_values: CustomCache,
|
896 |
+
output_attentions: bool,
|
897 |
+
):
|
898 |
+
if self.config._attn_implementation == "flash_attention_2":
|
899 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
900 |
+
return attention_mask
|
901 |
+
return None
|
902 |
+
|
903 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
904 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
905 |
+
# to infer the attention mask.
|
906 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
907 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
908 |
+
|
909 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
910 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
911 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
912 |
+
attention_mask,
|
913 |
+
inputs_embeds=input_tensor,
|
914 |
+
past_key_values_length=past_seen_tokens,
|
915 |
+
is_training=self.training,
|
916 |
+
):
|
917 |
+
return None
|
918 |
+
|
919 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
920 |
+
min_dtype = torch.finfo(dtype).min
|
921 |
+
sequence_length = input_tensor.shape[1]
|
922 |
+
if using_static_cache:
|
923 |
+
target_length = past_key_values.get_max_length()
|
924 |
+
else:
|
925 |
+
target_length = (
|
926 |
+
attention_mask.shape[-1]
|
927 |
+
if isinstance(attention_mask, torch.Tensor)
|
928 |
+
else past_seen_tokens + sequence_length + 1
|
929 |
+
)
|
930 |
+
|
931 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
932 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
933 |
+
attention_mask,
|
934 |
+
sequence_length=sequence_length,
|
935 |
+
target_length=target_length,
|
936 |
+
dtype=dtype,
|
937 |
+
device=device,
|
938 |
+
min_dtype=min_dtype,
|
939 |
+
cache_position=cache_position,
|
940 |
+
batch_size=input_tensor.shape[0],
|
941 |
+
)
|
942 |
+
|
943 |
+
if (
|
944 |
+
self.config._attn_implementation == "sdpa"
|
945 |
+
and attention_mask is not None
|
946 |
+
and attention_mask.device.type == "cuda"
|
947 |
+
and not output_attentions
|
948 |
+
):
|
949 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
950 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
951 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
952 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
953 |
+
|
954 |
+
return causal_mask
|
955 |
+
|
956 |
+
|
957 |
+
class NormHead(nn.Module):
|
958 |
+
def __init__(self, hidden_size, vocab_size, bias=False):
|
959 |
+
super().__init__()
|
960 |
+
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
|
961 |
+
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
962 |
+
|
963 |
+
def forward(self, hidden_states):
|
964 |
+
norm_weight = nn.functional.normalize(self.weight)
|
965 |
+
return nn.functional.linear(hidden_states, norm_weight)
|
966 |
+
|
967 |
+
|
968 |
+
class BaichuanM1ForCausalLM(BaichuanPreTrainedModel, GenerationMixin):
|
969 |
+
_tied_weights_keys = ["lm_head.weight"]
|
970 |
+
|
971 |
+
def __init__(self, config):
|
972 |
+
super().__init__(config)
|
973 |
+
self.model = BaichuanModel(config)
|
974 |
+
self.vocab_size = config.vocab_size
|
975 |
+
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
|
976 |
+
|
977 |
+
# Initialize weights and apply final processing
|
978 |
+
self.post_init()
|
979 |
+
|
980 |
+
def get_input_embeddings(self):
|
981 |
+
return self.model.embed_tokens
|
982 |
+
|
983 |
+
def set_input_embeddings(self, value):
|
984 |
+
self.model.embed_tokens = value
|
985 |
+
|
986 |
+
def get_output_embeddings(self):
|
987 |
+
return self.lm_head
|
988 |
+
|
989 |
+
def set_output_embeddings(self, new_embeddings):
|
990 |
+
self.lm_head = new_embeddings
|
991 |
+
|
992 |
+
def set_decoder(self, decoder):
|
993 |
+
self.model = decoder
|
994 |
+
|
995 |
+
def get_decoder(self):
|
996 |
+
return self.model
|
997 |
+
|
998 |
+
@add_start_docstrings_to_model_forward(Baichuan_INPUTS_DOCSTRING)
|
999 |
+
def forward(
|
1000 |
+
self,
|
1001 |
+
input_ids: torch.LongTensor = None,
|
1002 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1003 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1004 |
+
seqlens: Optional[torch.LongTensor] = None,
|
1005 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1006 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1007 |
+
labels: Optional[torch.LongTensor] = None,
|
1008 |
+
use_cache: Optional[bool] = None,
|
1009 |
+
output_attentions: Optional[bool] = None,
|
1010 |
+
output_hidden_states: Optional[bool] = None,
|
1011 |
+
return_dict: Optional[bool] = None,
|
1012 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1013 |
+
num_logits_to_keep: int = 0,
|
1014 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1015 |
+
r"""
|
1016 |
+
Args:
|
1017 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1018 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1019 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1020 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1021 |
+
|
1022 |
+
num_logits_to_keep (`int`, *optional*):
|
1023 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
1024 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1025 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1026 |
+
|
1027 |
+
Returns:
|
1028 |
+
|
1029 |
+
Example:
|
1030 |
+
|
1031 |
+
```python
|
1032 |
+
>>> from transformers import AutoTokenizer, BaichuanForCausalLM
|
1033 |
+
|
1034 |
+
>>> model = BaichuanForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1035 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1036 |
+
|
1037 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1038 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1039 |
+
|
1040 |
+
>>> # Generate
|
1041 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1042 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1043 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1044 |
+
```"""
|
1045 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1046 |
+
output_hidden_states = (
|
1047 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1048 |
+
)
|
1049 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1050 |
+
if input_ids is not None:
|
1051 |
+
input_ids[input_ids == self.config.vocab_size] = 0
|
1052 |
+
if labels is not None:
|
1053 |
+
labels[labels == self.config.vocab_size] = 0
|
1054 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1055 |
+
outputs = self.model(
|
1056 |
+
input_ids=input_ids,
|
1057 |
+
attention_mask=attention_mask,
|
1058 |
+
position_ids=position_ids,
|
1059 |
+
seqlens=seqlens,
|
1060 |
+
past_key_values=past_key_values,
|
1061 |
+
inputs_embeds=inputs_embeds,
|
1062 |
+
use_cache=use_cache,
|
1063 |
+
output_attentions=output_attentions,
|
1064 |
+
output_hidden_states=output_hidden_states,
|
1065 |
+
return_dict=return_dict,
|
1066 |
+
cache_position=cache_position,
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
hidden_states = outputs[0]
|
1070 |
+
if labels is None and not is_torchdynamo_compiling():
|
1071 |
+
logger.warning_once(
|
1072 |
+
"Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
|
1073 |
+
)
|
1074 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1075 |
+
# TODO: remove the float() operation in v4.46
|
1076 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1077 |
+
|
1078 |
+
loss = None
|
1079 |
+
if labels is not None:
|
1080 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
1081 |
+
# logits = logits.float()
|
1082 |
+
# Shift so that tokens < n predict n
|
1083 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1084 |
+
shift_labels = labels[..., 1:].contiguous()
|
1085 |
+
#shift_logits = logits
|
1086 |
+
#shift_labels = labels
|
1087 |
+
# Flatten the tokens
|
1088 |
+
loss_fct = CrossEntropyLoss()
|
1089 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1090 |
+
shift_labels = shift_labels.view(-1)
|
1091 |
+
# Enable model parallelism
|
1092 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1093 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1094 |
+
|
1095 |
+
if not return_dict:
|
1096 |
+
output = (logits,) + outputs[1:]
|
1097 |
+
return (loss,) + output if loss is not None else output
|
1098 |
+
|
1099 |
+
return CausalLMOutputWithPast(
|
1100 |
+
loss=loss,
|
1101 |
+
logits=logits,
|
1102 |
+
past_key_values=outputs.past_key_values,
|
1103 |
+
hidden_states=outputs.hidden_states,
|
1104 |
+
attentions=outputs.attentions,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
def prepare_inputs_for_generation(
|
1108 |
+
self,
|
1109 |
+
input_ids,
|
1110 |
+
past_key_values=None,
|
1111 |
+
attention_mask=None,
|
1112 |
+
inputs_embeds=None,
|
1113 |
+
cache_position=None,
|
1114 |
+
position_ids=None,
|
1115 |
+
use_cache=True,
|
1116 |
+
num_logits_to_keep=None,
|
1117 |
+
**kwargs,
|
1118 |
+
):
|
1119 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1120 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1121 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1122 |
+
if past_key_values is not None:
|
1123 |
+
if inputs_embeds is not None: # Exception 1
|
1124 |
+
input_ids = input_ids[:, -cache_position.shape[0]:]
|
1125 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1126 |
+
input_ids = input_ids[:, cache_position]
|
1127 |
+
|
1128 |
+
if attention_mask is not None and position_ids is None:
|
1129 |
+
# create position_ids on the fly for batch generation
|
1130 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1131 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1132 |
+
if past_key_values:
|
1133 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1134 |
+
|
1135 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
1136 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1137 |
+
|
1138 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1139 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1140 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1141 |
+
else:
|
1142 |
+
# The clone here is for the same reason as for `position_ids`.
|
1143 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1144 |
+
|
1145 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1146 |
+
if model_inputs["inputs_embeds"] is not None:
|
1147 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1148 |
+
device = model_inputs["inputs_embeds"].device
|
1149 |
+
else:
|
1150 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1151 |
+
device = model_inputs["input_ids"].device
|
1152 |
+
|
1153 |
+
dtype = self.lm_head.weight.dtype
|
1154 |
+
min_dtype = torch.finfo(dtype).min
|
1155 |
+
|
1156 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1157 |
+
attention_mask,
|
1158 |
+
sequence_length=sequence_length,
|
1159 |
+
target_length=past_key_values.get_max_length(),
|
1160 |
+
dtype=dtype,
|
1161 |
+
device=device,
|
1162 |
+
min_dtype=min_dtype,
|
1163 |
+
cache_position=cache_position,
|
1164 |
+
batch_size=batch_size,
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
if num_logits_to_keep is not None:
|
1168 |
+
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
1169 |
+
|
1170 |
+
model_inputs.update(
|
1171 |
+
{
|
1172 |
+
"position_ids": position_ids,
|
1173 |
+
"cache_position": cache_position,
|
1174 |
+
"past_key_values": past_key_values,
|
1175 |
+
"use_cache": use_cache,
|
1176 |
+
"attention_mask": attention_mask,
|
1177 |
+
}
|
1178 |
+
)
|
1179 |
+
return model_inputs
|
1180 |
+
|
1181 |
+
@torch.no_grad()
|
1182 |
+
def chat(self, tokenizer, messages: List[dict], stream=False,
|
1183 |
+
generation_config: Optional[GenerationConfig] = None):
|
1184 |
+
generation_config = generation_config or self.generation_config
|
1185 |
+
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True)
|
1186 |
+
input_ids = torch.LongTensor([input_ids]).to(self.device)
|
1187 |
+
if stream:
|
1188 |
+
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
1189 |
+
Thread(target=self.generate, kwargs=dict(
|
1190 |
+
inputs=input_ids, streamer=streamer,
|
1191 |
+
generation_config=generation_config,
|
1192 |
+
)).start()
|
1193 |
+
return streamer
|
1194 |
+
else:
|
1195 |
+
outputs = self.generate(input_ids, generation_config=generation_config)
|
1196 |
+
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
1197 |
+
return response
|
special_tokens_map.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>",
|
16 |
+
"<B_SYS>",
|
17 |
+
"<B_USYS>",
|
18 |
+
"<C_Q>",
|
19 |
+
"<C_A>",
|
20 |
+
"<|im_sep|>",
|
21 |
+
"<|tool_call|>",
|
22 |
+
"<|arguments|>"
|
23 |
+
],
|
24 |
+
"bos_token": {
|
25 |
+
"content": "<s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"eos_token": {
|
32 |
+
"content": "</s>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": true,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
"pad_token": "<pad>",
|
39 |
+
"unk_token": {
|
40 |
+
"content": "<unk>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": true,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false
|
45 |
+
}
|
46 |
+
}
|
tokenization_baichuan.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from shutil import copyfile
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import sentencepiece as spm
|
6 |
+
|
7 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
14 |
+
|
15 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
16 |
+
"vocab_file": {},
|
17 |
+
"tokenizer_file": {},
|
18 |
+
}
|
19 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
20 |
+
|
21 |
+
|
22 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
23 |
+
"""
|
24 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
vocab_file (`str`):
|
28 |
+
Path to the vocabulary file.
|
29 |
+
"""
|
30 |
+
|
31 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
32 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
33 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
34 |
+
model_input_names = ["input_ids", "attention_mask"]
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
vocab_file,
|
39 |
+
unk_token="<unk>",
|
40 |
+
bos_token="<s>",
|
41 |
+
eos_token="</s>",
|
42 |
+
pad_token=None,
|
43 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
44 |
+
add_bos_token=True,
|
45 |
+
add_eos_token=False,
|
46 |
+
clean_up_tokenization_spaces=False,
|
47 |
+
**kwargs,
|
48 |
+
):
|
49 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
50 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
51 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
52 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
53 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
54 |
+
self.vocab_file = vocab_file
|
55 |
+
self.add_bos_token = add_bos_token
|
56 |
+
self.add_eos_token = add_eos_token
|
57 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
58 |
+
self.sp_model.Load(vocab_file)
|
59 |
+
super().__init__(
|
60 |
+
bos_token=bos_token,
|
61 |
+
eos_token=eos_token,
|
62 |
+
unk_token=unk_token,
|
63 |
+
pad_token=pad_token,
|
64 |
+
add_bos_token=add_bos_token,
|
65 |
+
add_eos_token=add_eos_token,
|
66 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
67 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
68 |
+
**kwargs,
|
69 |
+
)
|
70 |
+
self.pad_token_id = self._convert_token_to_id(self.pad_token)
|
71 |
+
|
72 |
+
def __getstate__(self):
|
73 |
+
state = self.__dict__.copy()
|
74 |
+
state["sp_model"] = None
|
75 |
+
return state
|
76 |
+
|
77 |
+
def __setstate__(self, d):
|
78 |
+
self.__dict__ = d
|
79 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
80 |
+
self.sp_model.Load(self.vocab_file)
|
81 |
+
|
82 |
+
@property
|
83 |
+
def vocab_size(self):
|
84 |
+
"""Returns vocab size"""
|
85 |
+
return self.sp_model.get_piece_size()
|
86 |
+
|
87 |
+
def get_vocab(self):
|
88 |
+
"""Returns vocab as a dict"""
|
89 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
90 |
+
vocab.update(self.added_tokens_encoder)
|
91 |
+
return vocab
|
92 |
+
|
93 |
+
def _tokenize(self, text):
|
94 |
+
"""Returns a tokenized string."""
|
95 |
+
return self.sp_model.encode(text, out_type=str)
|
96 |
+
|
97 |
+
def _convert_token_to_id(self, token):
|
98 |
+
"""Converts a token (str) in an id using the vocab."""
|
99 |
+
return self.sp_model.piece_to_id(token)
|
100 |
+
|
101 |
+
def _convert_id_to_token(self, index):
|
102 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
103 |
+
token = self.sp_model.IdToPiece(index)
|
104 |
+
return token
|
105 |
+
|
106 |
+
def convert_tokens_to_string(self, tokens):
|
107 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
108 |
+
current_sub_tokens = []
|
109 |
+
out_string = ""
|
110 |
+
prev_is_special = False
|
111 |
+
for i, token in enumerate(tokens):
|
112 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
113 |
+
if token in self.all_special_tokens:
|
114 |
+
if not prev_is_special and i != 0:
|
115 |
+
out_string += " "
|
116 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
117 |
+
prev_is_special = True
|
118 |
+
current_sub_tokens = []
|
119 |
+
else:
|
120 |
+
current_sub_tokens.append(token)
|
121 |
+
prev_is_special = False
|
122 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
123 |
+
return out_string
|
124 |
+
|
125 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
126 |
+
"""
|
127 |
+
Save the vocabulary and special tokens file to a directory.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
save_directory (`str`):
|
131 |
+
The directory in which to save the vocabulary.
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
`Tuple(str)`: Paths to the files saved.
|
135 |
+
"""
|
136 |
+
if not os.path.isdir(save_directory):
|
137 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
138 |
+
return
|
139 |
+
out_vocab_file = os.path.join(
|
140 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
141 |
+
)
|
142 |
+
|
143 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
144 |
+
copyfile(self.vocab_file, out_vocab_file)
|
145 |
+
elif not os.path.isfile(self.vocab_file):
|
146 |
+
with open(out_vocab_file, "wb") as fi:
|
147 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
148 |
+
fi.write(content_spiece_model)
|
149 |
+
|
150 |
+
return (out_vocab_file,)
|
151 |
+
|
152 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
153 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
154 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
155 |
+
|
156 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
157 |
+
|
158 |
+
if token_ids_1 is not None:
|
159 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
160 |
+
|
161 |
+
return output
|
162 |
+
|
163 |
+
def get_special_tokens_mask(
|
164 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
165 |
+
) -> List[int]:
|
166 |
+
"""
|
167 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
168 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
token_ids_0 (`List[int]`):
|
172 |
+
List of IDs.
|
173 |
+
token_ids_1 (`List[int]`, *optional*):
|
174 |
+
Optional second list of IDs for sequence pairs.
|
175 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
176 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
180 |
+
"""
|
181 |
+
if already_has_special_tokens:
|
182 |
+
return super().get_special_tokens_mask(
|
183 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
184 |
+
)
|
185 |
+
|
186 |
+
bos_token_id = [1] if self.add_bos_token else []
|
187 |
+
eos_token_id = [1] if self.add_eos_token else []
|
188 |
+
|
189 |
+
if token_ids_1 is None:
|
190 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
191 |
+
return (
|
192 |
+
bos_token_id
|
193 |
+
+ ([0] * len(token_ids_0))
|
194 |
+
+ eos_token_id
|
195 |
+
+ bos_token_id
|
196 |
+
+ ([0] * len(token_ids_1))
|
197 |
+
+ eos_token_id
|
198 |
+
)
|
199 |
+
|
200 |
+
def create_token_type_ids_from_sequences(
|
201 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
202 |
+
) -> List[int]:
|
203 |
+
"""
|
204 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
205 |
+
sequence pair mask has the following format:
|
206 |
+
|
207 |
+
```
|
208 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
209 |
+
| first sequence | second sequence |
|
210 |
+
```
|
211 |
+
|
212 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
213 |
+
|
214 |
+
Args:
|
215 |
+
token_ids_0 (`List[int]`):
|
216 |
+
List of ids.
|
217 |
+
token_ids_1 (`List[int]`, *optional*):
|
218 |
+
Optional second list of IDs for sequence pairs.
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
222 |
+
"""
|
223 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
224 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
225 |
+
|
226 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
227 |
+
|
228 |
+
if token_ids_1 is not None:
|
229 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
230 |
+
|
231 |
+
return output
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f5af87706706ff930034b468c7f315c7da31de5f35d5b71a6458329ef5d9034
|
3 |
+
size 2224601
|
tokenizer_config.json
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"50": {
|
38 |
+
"content": "<|im_start|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"51": {
|
46 |
+
"content": "<|im_end|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"52": {
|
54 |
+
"content": "<|object_ref_start|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"53": {
|
62 |
+
"content": "<|object_ref_end|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"54": {
|
70 |
+
"content": "<|box_start|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"55": {
|
78 |
+
"content": "<|box_end|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"56": {
|
86 |
+
"content": "<|quad_start|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"57": {
|
94 |
+
"content": "<|quad_end|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"58": {
|
102 |
+
"content": "<|vision_start|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"59": {
|
110 |
+
"content": "<|vision_end|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"60": {
|
118 |
+
"content": "<|vision_pad|>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"61": {
|
126 |
+
"content": "<|image_pad|>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"62": {
|
134 |
+
"content": "<|video_pad|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"63": {
|
142 |
+
"content": "<tool_call>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"64": {
|
150 |
+
"content": "</tool_call>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"65": {
|
158 |
+
"content": "<|fim_prefix|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"66": {
|
166 |
+
"content": "<|fim_middle|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"67": {
|
174 |
+
"content": "<|fim_suffix|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"68": {
|
182 |
+
"content": "<|fim_pad|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"69": {
|
190 |
+
"content": "<|repo_name|>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"70": {
|
198 |
+
"content": "<|file_sep|>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"71": {
|
206 |
+
"content": "<B_SYS>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": true
|
212 |
+
},
|
213 |
+
"72": {
|
214 |
+
"content": "<B_USYS>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
},
|
221 |
+
"73": {
|
222 |
+
"content": "<C_Q>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": true
|
228 |
+
},
|
229 |
+
"74": {
|
230 |
+
"content": "<C_A>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": true,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"75": {
|
238 |
+
"content": "<B_FUNC>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": true,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"76": {
|
246 |
+
"content": "<B_CODE>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": true,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"77": {
|
254 |
+
"content": "<B_APE>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": true,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"78": {
|
262 |
+
"content": "<function_calling>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": true,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"79": {
|
270 |
+
"content": "<calc_start>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": true,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"80": {
|
278 |
+
"content": "<calc_end>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": true,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"81": {
|
286 |
+
"content": "<inner_think>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": true,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"82": {
|
294 |
+
"content": "<|im_sep|>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": true
|
300 |
+
},
|
301 |
+
"83": {
|
302 |
+
"content": "<|tool_call|>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": true
|
308 |
+
},
|
309 |
+
"84": {
|
310 |
+
"content": "<|arguments|>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": true
|
316 |
+
},
|
317 |
+
"85": {
|
318 |
+
"content": "<|o1_step|>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": true,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": false
|
324 |
+
},
|
325 |
+
"86": {
|
326 |
+
"content": "<|o1_answer|>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": true,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": false
|
332 |
+
},
|
333 |
+
"87": {
|
334 |
+
"content": "<tree_node>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": true,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": false
|
340 |
+
},
|
341 |
+
"88": {
|
342 |
+
"content": "</tree_node>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": true,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": false
|
348 |
+
}
|
349 |
+
},
|
350 |
+
"additional_special_tokens": [
|
351 |
+
"<|im_start|>",
|
352 |
+
"<|im_end|>",
|
353 |
+
"<|object_ref_start|>",
|
354 |
+
"<|object_ref_end|>",
|
355 |
+
"<|box_start|>",
|
356 |
+
"<|box_end|>",
|
357 |
+
"<|quad_start|>",
|
358 |
+
"<|quad_end|>",
|
359 |
+
"<|vision_start|>",
|
360 |
+
"<|vision_end|>",
|
361 |
+
"<|vision_pad|>",
|
362 |
+
"<|image_pad|>",
|
363 |
+
"<|video_pad|>",
|
364 |
+
"<B_SYS>",
|
365 |
+
"<B_USYS>",
|
366 |
+
"<C_Q>",
|
367 |
+
"<C_A>",
|
368 |
+
"<|im_sep|>",
|
369 |
+
"<|tool_call|>",
|
370 |
+
"<|arguments|>"
|
371 |
+
],
|
372 |
+
"auto_map": {
|
373 |
+
"AutoTokenizer": [
|
374 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
375 |
+
null
|
376 |
+
]
|
377 |
+
},
|
378 |
+
"bos_token": "<s>",
|
379 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{'<B_SYS>' + message['content']}}{% elif message['role'] == 'user_system' %}{{'<B_USYS>' + message['content']}}{% elif message['role'] == 'user' %}{{'<C_Q>' + message['content']}}{% elif message['role'] == 'assistant' %}{{'<C_A>' + message['content']}}{% elif message['role'] == 'function' %}{{'<B_FUNC>' + message['content']}}{% elif message['role'] == 'code' %}{{'<B_CODE>' + message['content']}}{% else %}{{ raise_exception('Invalid message role: ' + message['role']) }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{'<C_A>'}}{% endif %}",
|
380 |
+
"clean_up_tokenization_spaces": false,
|
381 |
+
"eos_token": "</s>",
|
382 |
+
"extra_special_tokens": {},
|
383 |
+
"model_max_length": 32768,
|
384 |
+
"pad_token": "<pad>",
|
385 |
+
"sp_model_kwargs": {},
|
386 |
+
"tokenizer_class": "BaichuanTokenizer",
|
387 |
+
"unk_token": "<unk>",
|
388 |
+
"use_fast": false
|
389 |
+
}
|