Safetensors
omni
custom_code
File size: 45,245 Bytes
7622606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
import requests
import re, ujson, os, sys, fire, glob, random, time, json
import numpy as np
import io
import torch
from torch.utils.data import default_collate
import torchaudio
from typing import *
from dataclasses import dataclass, field
import transformers
from transformers.modeling_outputs import ModelOutput
from transformers.audio_utils import mel_filter_bank, spectrogram, window_function
from functools import lru_cache
from io import BytesIO
from PIL import Image
import concurrent.futures as cf
from transformers.image_transforms import resize, center_crop, get_resize_output_image_size
from transformers.image_utils import PILImageResampling
from PIL import Image, ImageOps
from PIL import ImageFile
torch.set_num_threads(1)  # 限制torch的线程数 否则可能会卡住
ImageFile.LOAD_TRUNCATED_IMAGES = True
import base64
from decord import VideoReader, cpu
import cv2
import av
import imagesize
import tempfile
import math
from multiprocessing import Pool
from cairosvg import svg2png
import hashlib

IMAGE_FACTOR = 28
MIN_PIXELS = 4 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200

VIDEO_MIN_PIXELS = 128 * 28 * 28
VIDEO_MAX_PIXELS = 768 * 28 * 28
VIDEO_TOTAL_PIXELS = 24576 * 28 * 28
FRAME_FACTOR = 2
FPS = 2.0
FPS_MIN_FRAMES = 4
FPS_MAX_FRAMES = 768

def round_by_factor(number: int, factor: int) -> int:
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
    return round(number / factor) * factor


def ceil_by_factor(number: int, factor: int) -> int:
    """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
    return math.ceil(number / factor) * factor


def floor_by_factor(number: int, factor: int) -> int:
    """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
    return math.floor(number / factor) * factor


def smart_resize(
    height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
    """
    Rescales the image so that the following conditions are met:

    1. Both dimensions (height and width) are divisible by 'factor'.

    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

    3. The aspect ratio of the image is maintained as closely as possible.
    """
    if max(height, width) / min(height, width) > MAX_RATIO:
        raise ValueError(
            f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
        )
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = floor_by_factor(height / beta, factor)
        w_bar = floor_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = ceil_by_factor(height * beta, factor)
        w_bar = ceil_by_factor(width * beta, factor)
    return h_bar, w_bar


def split_text(text, match_regex):
    matches = list(re.finditer(match_regex, text))
    # 初始化结果列表
    result = []
    match_flag_list = []
    # 上一个匹配的结束位置
    last_end = 0
    # 遍历所有匹配项
    for match in matches:
        # 添加匹配项之前的部分
        if text[last_end:match.start()]:
            result.append(text[last_end:match.start()])
            match_flag_list.append(False)
        # 添加匹配项
        result.append(match.group(0))
        match_flag_list.append(True)
        # 更新上一个匹配的结束位置
        last_end = match.end()
    # 添加最后一个匹配项之后的部分
    if text[last_end:]:
        result.append(text[last_end:])
        match_flag_list.append(False)
    return result, match_flag_list


def read_video(image_path, max_frame_number, decode_way):
    if decode_way=='1fps':
        try:
            # print(image_path)
            vr = VideoReader(image_path, ctx=cpu(0))
            total_frame_num = len(vr)
            fps = round(vr.get_avg_fps())
            frame_idx = [i for i in range(0, len(vr), fps)]
            frames = vr.get_batch(frame_idx).asnumpy()
            cnt = len(frames)
            frame_times = range(cnt)
        except Exception as e:
            print(image_path)
            print('error is', e)
            return None
    elif decode_way=='key':
        try: 
            with av.open(image_path) as container:                         
                stream = container.streams.video[0]
                stream.codec_context.skip_frame = 'NONKEY'
                frames = []
                frame_times = []
                fps = int(stream.average_rate)
                cnt = 0
                for frame in container.decode(stream): # 关键帧存成image patch
                    image = np.array(frame.to_image())
                    frames.append(image)
                    frame_time = int(frame.time)
                    frame_times.append(frame_time)
                    cnt += 1
        except Exception as e:
            print('error is', e)
            return None
    if frames is None or len(frames)==0:
        return None
    if len(frames)>max_frame_number and max_frame_number>0:
        # 生成14个均匀间隔的索引
        indices = np.linspace(0, len(frames) - 1, max_frame_number, dtype=int)
        # 根据索引获取对应元素
        frames = frames[indices]
        frame_times = frame_times[indices]
    return frames, frame_times


class OmniImageProcessor:
    def __init__(self, config, **kwargs):
        self.config = config  # visual_config
        self.min_pixels = self.config.min_pixels if hasattr(self.config, 'min_pixels') else 56 * 56
        self.max_pixels = self.config.max_pixels if hasattr(self.config, 'max_pixels') else 28 * 28 * 1280
        self.patch_size = self.config.patch_size if hasattr(self.config, 'patch_size') else 14
        self.temporal_patch_size = self.config.temporal_patch_size if hasattr(self.config, 'temporal_patch_size') else 2
        self.merge_size = self.config.merge_size if hasattr(self.config, 'merge_size') else 2
        self.spatial_merge_size = self.config.spatial_merge_size if hasattr(self.config, 'spatial_merge_size') else 2

    def image_transform(self, strseq, return_mm_data = True):
        image = None
        if isinstance(strseq, str):
            if return_mm_data:
                image = Image.open(strseq).convert("RGB") 
        else:
            try:
                image = Image.open(BytesIO(strseq)).convert("RGB")
            except:
                image = Image.open(BytesIO(svg2png(bytestring=strseq))).convert("RGB") # interleaved有的是矢量图,需要转换
            
        image = np.array(image.convert("RGB")) # 这一步首先将图像转换为 RGB 格式,确保图像有三个通道(R、G、B)。然后使用 np.array() 将其转换为 NumPy 数组,方便后续处理。
        image_org_size = image.shape[:2] # 这里保存了图像的原始大小(高度和宽度),image.shape 返回图像的形状 (高度, 宽度, 通道数),而 image.shape[:2] 提取了前两个值,即原始的高度和宽度。这个信息可以用于后续的对比或其他处理。
        
        # resize, crop, scale, normalize
        # 输出一个新的尺寸,这个尺寸通常是 (宽度, 高度) 格式,用于后续的图像调整操作,如缩放或裁剪。
        resized_height, resized_width = smart_resize(
            image_org_size[0], image_org_size[1],
            factor=self.patch_size * self.spatial_merge_size,
            min_pixels=self.min_pixels,
            max_pixels=self.max_pixels,
        )
        output_size = (resized_height, resized_width)
        
        # 使用 resize 函数将图像调整到 output_size 大小。PILImageResampling.BICUBIC 指定使用双三次插值法来进行图像缩放,这种方法通常能够提供较好的图像质量。
        # image: 输入的图像数据,可以是 NumPy 数组或 PIL 图像对象;output_size: 目标大小,通常是一个二元组 (宽度, 高度)。这个尺寸可以是图像的绝对大小,也可以是相对于原始图像的比例;
        # resample: 可选的重采样方法,通常用于确定如何插值像素。例如,PILImageResampling.BICUBIC 表示使用双三次插值法,这是一种平滑的插值方法,常用于图像缩放。
        image = resize(image, output_size, PILImageResampling.BICUBIC)
        img = image.transpose(2, 0, 1)
        # 对图像进行归一化和标准化处理
        image = (img / 255.0 - np.array(self.config.image_mean)[:, np.newaxis, np.newaxis]) / np.array(self.config.image_std)[:,np.newaxis,np.newaxis]
        # 处理成patch
        patches = image[np.newaxis, :]
        if patches.shape[0] == 1:
            patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
        channel = patches.shape[1]
        grid_t = patches.shape[0] // self.temporal_patch_size
        grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
        patches = patches.reshape(
            grid_t,
            self.temporal_patch_size,
            channel,
            grid_h // self.spatial_merge_size,
            self.spatial_merge_size,
            self.patch_size,
            grid_w // self.spatial_merge_size,
            self.spatial_merge_size,
            self.patch_size,
        )
        patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
        flatten_patches = patches.reshape(
            grid_t * grid_h * grid_w, channel * self.temporal_patch_size * self.patch_size * self.patch_size
        )

        return flatten_patches, image_org_size, (grid_t, grid_h, grid_w)


class OmniAudioProcessor:
    # 包含基本的音频特征抽取模块 + 输入数据解析模块
    def __init__(
        self,
        config,  # audio processor config
        **kwargs
    ):
        # make sure you have install 'conda install -c conda-forge 'ffmpeg<7'' for torchaudio
        assert(len(torchaudio.list_audio_backends()) > 0)
        self.config = config
        self.mel_filters = mel_filter_bank(
            num_frequency_bins=1 + self.config.n_fft // 2,
            num_mel_filters=self.config.num_mel_bins,
            min_frequency=0.0,
            max_frequency=self.config.sampling_rate / 2.0,
            sampling_rate=self.config.sampling_rate,
            norm="slaney",
            mel_scale="slaney",
        )
        self.window = torch.hann_window(self.config.n_fft)
        
    @staticmethod
    def dynamic_range_compression(x, C=1, clip_val=1e-6):
        return torch.log(torch.clamp(x, min=clip_val) * C)

    @staticmethod
    def zero_mean_unit_var_norm(x):
        return (x - x.mean()) / torch.sqrt(x.var() + 1e-8)

    def load_audio_waveform(self, uri, return_tensors=True, do_normalize=False):
        metadata = torchaudio.info(uri)  # sample_rate, num_frames, num_channels, bits_per_sample, encoding=PCM_S
        assert(metadata.num_channels <= 2), "acoustic file with {} channels.".format(metadata.num_channels)  # whisper only accept mono channel audio
        waveform_tensor, _ = torchaudio.load(uri, normalize=True)
        if self.config.sampling_rate != metadata.sample_rate:
            waveform_tensor = torchaudio.functional.resample(waveform_tensor, metadata.sample_rate, self.config.sampling_rate, lowpass_filter_width=128)

        # downmix to mono channel https://trac.ffmpeg.org/wiki/AudioChannelManipulation
        if metadata.num_channels > 1:
            waveform_tensor = torch.mean(waveform_tensor, dim=0, keepdim=True)

        # normalized to zero mean
        if do_normalize:
            waveform_tensor = self.zero_mean_unit_var_norm(waveform_tensor)

        if return_tensors:  # (channels, samples)
            return waveform_tensor
        else:
            return waveform_tensor.numpy()  

    def split_with_overlap(self, waveform):  # 如果长度超过最大长度限制 分割为带overlap的多段
        channels, wave_samples = waveform.shape
        max_audio_samples = self.config.max_audio_seconds * self.config.sampling_rate
        if wave_samples <= max_audio_samples or self.config.split_overlap < 0:
            return [waveform]  # 没有超出最大长度or截断逻辑 统一返回list
        
        split_waveform, start = [], 0
        while start < wave_samples:  # 统一按秒数对齐overlap
            if start > int(self.config.sampling_rate * self.config.split_overlap):
                start -= int(self.config.sampling_rate * self.config.split_overlap)  # 0表示没有overlap,>0 overlap对应秒数
            end = min(start + max_audio_samples, wave_samples)
            if end - start>= self.config.n_fft: # 保证至少有一帧数据
                split_waveform.append(waveform[:, start:end])  # 注意这里可能会切割出特别短的片段 需要在预处理判断并丢弃
            start = end
        return split_waveform

    @classmethod        
    def inference_output_length(cls, config, input_length):
        # for whisper + bridge
        kernel_size = config.kernel_size
        stride_size = config.stride_size
        avg_pooler = config.avg_pooler
        encoder_length = (input_length + 2 * (kernel_size // 2) - kernel_size) // 1 + 1  # conv layer1 with pad=1
        encoder_length = (encoder_length + 2 * (kernel_size // 2) - kernel_size) // stride_size + 1  # conv layer2 with pad=1
        if avg_pooler > 1:
            bridge_length = encoder_length // avg_pooler
        return encoder_length, bridge_length

    def extract_fbank_features(self, waveform):
        # ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/feature_extraction_whisper.py
        channels, wave_samples = waveform.shape
        assert(wave_samples >= self.config.n_fft)
        valid_frame_nums = min(self.config.max_audio_seconds * self.config.sampling_rate // self.config.hop_length, wave_samples // self.config.hop_length + 1)
        if wave_samples < self.config.max_audio_seconds * self.config.sampling_rate:
            waveform = torch.nn.functional.pad(waveform, (0, self.config.max_audio_seconds * self.config.sampling_rate - wave_samples), "constant", 0)
        else:
            waveform = waveform[:, :self.config.max_audio_seconds * self.config.sampling_rate]

        # window = torch.hann_window(self.config.n_fft)
        stft = torch.stft(waveform, self.config.n_fft, self.config.hop_length, window=self.window, return_complex=True)  # fft, len(wave) // n_fft // 2 + 1
        magnitudes = stft[..., :-1].abs() ** 2

        mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
        mel_spec = mel_filters.T @ magnitudes
        log_spec = torch.clamp(mel_spec, min=1e-10).log10()
        if waveform.dim() == 2:
            max_val = log_spec.max(dim=2, keepdim=True)[0].max(dim=1, keepdim=True)[0]
            log_spec = torch.maximum(log_spec, max_val - 8.0)
        else:
            log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
        log_spec = (log_spec + 4.0) / 4.0

        log_spec = log_spec[0].numpy()  # (channel, filters, samples) -> (filters, samples)
        log_spec[:, valid_frame_nums:] = 0.0  # pad0

        return log_spec, valid_frame_nums

    def data_augment(self, feature: np.array, input_length, training=True):
        # reference https://arxiv.org/pdf/1904.08779
        def mask_start_indices(input_length, mask_length, min_masks, mask_prob):
            num_masked_span = int(mask_prob * input_length / mask_length + random.random())
            num_masked_span = max(num_masked_span, min_masks)
            start_indices = list(range(input_length - mask_length))
            random.shuffle(start_indices)
            start_indices = start_indices[:num_masked_span]
            return start_indices

        if not training or (self.config.mask_time_prob <= 0 and self.config.mask_feature_prob <= 0):
            return feature
        if input_length < self.config.mask_time_length * self.config.mask_time_min_masks + 1:
            return feature
        if self.config.num_mel_bins < self.config.mask_feature_length * self.config.mask_feature_min_masks + 1: 
            return feature
        
        if self.config.mask_time_prob > 0:
            start_indices = mask_start_indices(input_length, self.config.mask_time_length, self.config.mask_time_min_masks, self.config.mask_time_prob) 
            for start_idx in start_indices:
                feature[:, start_idx: start_idx + self.config.mask_time_length] = 0.0
        if self.config.mask_feature_prob > 0:
            start_indices = mask_start_indices(self.config.num_mel_bins, self.config.mask_feature_length, self.config.mask_feature_min_masks, self.config.mask_feature_prob) 
            for start_idx in start_indices:
                feature[start_idx: start_idx + self.config.mask_feature_length, :] = 0.0

        return feature

@dataclass
class OmniProcessorOutput(ModelOutput):  
    input_ids: Optional["List|torch.Tensor"] = None
    labels: Optional["List|torch.Tensor"] = None
    attention_mask: Optional["List|torch.Tensor"] = None
    position_ids: Optional["List|torch.Tensor"] = None
    seqlens: Optional["List|torch.Tensor"] = None  # 需要配合Omni Modeling使用
    # audio fields
    audios: Optional["List|torch.Tensor"] = None
    encoder_length: Optional["List|torch.Tensor"] = None
    bridge_length: Optional["List|torch.Tensor"] = None
    # image fields
    images: Optional["List|torch.Tensor"] = None
    patch_nums: Optional["List|torch.Tensor"] = None
    images_size: Optional["List|torch.Tensor"] = None
    crop_size: Optional["List|torch.Tensor"] = None
    images_grid: Optional["List|torch.Tensor"] = None
    # video fields
    videos: Optional["List|torch.Tensor"] = None
    videos_patch_nums: Optional["List|torch.Tensor"] = None
    videos_size: Optional["List|torch.Tensor"] = None
    videos_crop_size: Optional["List|torch.Tensor"] = None
    videos_grid: Optional["List|torch.Tensor"] = None
    # processor fields
    raw_text: Optional[str] = None
    index: Optional[int] = None

    def concatenate(self, other):  # 仅限list使用
        def concat_one(a, b):
            if a is None and b is None:
                return None
            elif a is None and b is not None:
                return b 
            elif a is not None and b is None: 
                return a 
            else: 
                return a + b
        return OmniProcessorOutput(
            input_ids=concat_one(self.input_ids, other.input_ids),
            labels=concat_one(self.labels, other.labels),
            audios=concat_one(self.audios, other.audios),
            encoder_length=concat_one(self.encoder_length, other.encoder_length),
            bridge_length=concat_one(self.bridge_length, other.bridge_length), 
            images=concat_one(self.images, other.images),
            images_grid=concat_one(self.images_grid, other.images_grid),
            patch_nums=concat_one(self.patch_nums, other.patch_nums),

            videos=concat_one(self.videos, other.videos),
            videos_grid=concat_one(self.videos_grid, other.videos_grid),
            videos_patch_nums=concat_one(self.videos_patch_nums, other.videos_patch_nums),

            position_ids=concat_one(self.position_ids, other.position_ids),
            seqlens=concat_one(self.seqlens, other.seqlens),
            images_size=concat_one(self.images_size, other.images_size),
            videos_size=concat_one(self.videos_size, other.videos_size),
            index = self.index # concat保持index不变
        )

class OmniMMProcessor(object):
    def __init__(self,
                tokenizer: transformers.PreTrainedTokenizer,
                config,
                training,
                relative_path=None,
                parallel=None,
                **kwargs, 
    ):
        self.tokenizer = tokenizer
        self.config = config
        self.audio_processor = OmniAudioProcessor(config.audio_config)
        self.visual_processor = None
        if hasattr(config, "visual_config"):
            self.visual_processor = OmniImageProcessor(config.visual_config)
        self.video_processor = None
        if hasattr(config, "video_config"):
            self.video_processor = OmniImageProcessor(config.video_config)
        self.training = training
        self.relative_path = relative_path
        self.parallel = parallel
        # audio tag
        self.audio_start_tag = self.tokenizer.convert_ids_to_tokens(self.config.audio_config.audio_start_token_id)
        self.audio_end_tag = self.tokenizer.convert_ids_to_tokens(self.config.audio_config.audio_end_token_id)
        self.audio_pad_tag = self.tokenizer.convert_ids_to_tokens(self.config.audio_config.audio_pad_token_id)
        self.audio_delim_tag = self.tokenizer.convert_ids_to_tokens(self.config.audio_config.audio_delim_token_id)
        self.audiogen_start_tag = self.tokenizer.convert_ids_to_tokens(self.config.audio_config.audiogen_start_token_id)
        self.audiogen_end_tag = self.tokenizer.convert_ids_to_tokens(self.config.audio_config.audiogen_end_token_id)
        # image tag
        self.image_start_tag = None
        self.image_end_tag = None
        self.image_pad_tag = None
        self.video_start_tag = None
        self.video_end_tag = None
        # videoframe tag只是为了兼容图片帧作为输入的情况,没有token id,在抽取视频帧的时候,会将这个替换成image tag的start、end
        self.videoframe_start_tag = '<videoframe_start_omni>'
        self.videoframe_end_tag = '<videoframe_end_omni>'
        if hasattr(self.config, "visual_config"):
            # special token for start_tag
            self.image_start_tag = self.tokenizer.convert_ids_to_tokens(self.config.visual_config.image_start_token_id)
            # special token for end_tag
            self.image_end_tag = self.tokenizer.convert_ids_to_tokens(self.config.visual_config.image_end_token_id)
            # special token for pad_tag
            self.image_pad_tag = self.tokenizer.convert_ids_to_tokens(self.config.visual_config.image_pad_token_id)
            self.image_line_tag = self.tokenizer.convert_ids_to_tokens(self.config.visual_config.image_line_token_id)
            self.image_delimiter_tag = self.tokenizer.convert_ids_to_tokens(self.config.visual_config.image_delimiter_token_id) 
        if hasattr(self.config, "video_config"):
            self.video_start_tag = self.tokenizer.convert_ids_to_tokens(self.config.video_config.video_start_token_id)
            self.video_end_tag = self.tokenizer.convert_ids_to_tokens(self.config.video_config.video_end_token_id)
            self.image_start_tag = self.tokenizer.convert_ids_to_tokens(self.config.video_config.image_start_token_id)
            self.image_end_tag = self.tokenizer.convert_ids_to_tokens(self.config.video_config.image_end_token_id)
            self.image_pad_tag = self.tokenizer.convert_ids_to_tokens(self.config.video_config.image_pad_token_id)
            self.video_place_tag = self.tokenizer.convert_ids_to_tokens(self.config.video_config.video_place_token_id)
            
            self.frame_pattern = getattr(self.config.video_config, 'frame_pattern', '<frame>')


    # @lru_cache(maxsize=1024)
    def _get_audio(self, audio_info):
        try:
            audio_info = ujson.loads(audio_info) 
            if 'path' in audio_info.keys():
                audio_uri = None
                if os.path.exists(audio_info['path']):
                    audio_uri = audio_info['path']
                elif self.relative_path is not None:
                    audio_uri = os.path.join(self.relative_path, audio_info['path'].lstrip('/'))
                    if not os.path.exists(audio_uri):
                        audio_uri = None
                if audio_uri is not None:
                    waveform = self.audio_processor.load_audio_waveform(audio_uri, True)
                waveforms = self.audio_processor.split_with_overlap(waveform) 
                
                ret = OmniProcessorOutput()  # 默认初始化 audios字段为None
                for i, waveform in enumerate(waveforms): #(zip(waveforms,vocoder_waveforms)):
                    audio, input_length = self.audio_processor.extract_fbank_features(waveform)
                    audio = self.audio_processor.data_augment(audio, input_length, self.training)
                    encoder_length, bridge_length = self.audio_processor.inference_output_length(self.config.audio_config, input_length)
                    if bridge_length <= 0: 
                        continue
                    current_ret = OmniProcessorOutput(
                        audios=[audio[:,:input_length]], 
                        encoder_length=[encoder_length], 
                        bridge_length=[bridge_length],
                        )
                    if ret.audios is None:
                        ret = current_ret
                    else:
                        ret = ret.concatenate(current_ret)  # 拼接多个切片
                return ret
            else:
                raise ValueError("can not find path in audio_info") 
        except Exception as e:
            print("**** get audio error: {}, info: {} *****".format(str(e), str(audio_info)))
        return OmniProcessorOutput()

    # @lru_cache(maxsize=1024)
    def _get_image(self, image_info):
        try:
            try:
                image_info = ujson.loads(image_info)
            except:
                image_info = re.sub(r"(?<!\\)'", '"', image_info)
                image_info = ujson.loads(image_info)
            if 'base64' in image_info.keys():
                image_data = base64.b64decode(image_info['base64'])
                image_feat, org_size, image_list = self.visual_processor.image_transform(image_data)
            elif 'local' in image_info.keys():
                image_feat, org_size, image_list = self.visual_processor.image_transform(image_info['local'])
            elif 'path' in image_info.keys() and os.path.exists(image_info['path']):
                image_feat, org_size, image_list = self.visual_processor.image_transform(image_info['path'])
            elif 'url' in image_info.keys():
                image_bytes = self._get_vision_obj_byte('url', image_info['url'])
                image_feat, org_size, image_list = self.visual_processor.image_transform(image_bytes)
            else:
                raise ValueError("can not find any path in image_info")
            
            merge_length = self.visual_processor.merge_size**2
            patch_nums = np.array(image_list).prod() // merge_length
            
            if org_size[0] * org_size[1] > 16**2:  # 极端小的图过滤
                return OmniProcessorOutput(
                        images=[image_feat],
                        patch_nums=[patch_nums],
                        crop_size=[image_list],
                        images_size= [org_size],
                        images_grid=[image_list]
                        )
            else:
                print("**** image too small: {}, info: {} *****".format(str(org_size), str(image_info)))
                return OmniProcessorOutput()
           
        except Exception as e:
            print("**** get image error: {}, info: {} *****".format(str(e), str(image_info)))
        return OmniProcessorOutput()
    
    # @lru_cache(maxsize=1024)
    def _get_video_frame(self, video_frame_infos):
        try:
            pattern = r'\{.*?\}'
            matches = re.findall(pattern, video_frame_infos)
            ret = OmniProcessorOutput()
            # 逐个解析
            for match in matches:
                video_frame_info = ujson.loads(match)
                # video_frame_info = ujson.loads(video_frame_info)
                if 'local' in video_frame_info.keys():
                    image_feat, org_size, image_list = self.video_processor.image_transform(video_frame_info['local'])
                elif 'path' in video_frame_info.keys() and os.path.exists(video_frame_info['path']):
                    image_feat, org_size, image_list = self.video_processor.image_transform(video_frame_info['path'])
                else:
                    raise ValueError("can not find any path in video_info")

                merge_length = self.video_processor.merge_size**2
                patch_nums = np.array(image_list).prod() // merge_length
                
                if org_size[0] * org_size[1] > 16**2:  # 极端小的图过滤
                    ret = ret.concatenate(
                            OmniProcessorOutput(
                                videos=[image_feat],
                                videos_patch_nums=[patch_nums],
                                videos_crop_size=[image_list],
                                videos_size= [org_size],
                                videos_grid=[image_list]
                            )
                        )
                else:
                    print("**** video too small: {}, info: {} *****".format(str(org_size), str(video_frame_info)))
            return ret
           
        except Exception as e:
            print("**** get video error: {}, info: {} *****".format(str(e), str(video_frame_info)))
        return OmniProcessorOutput()

    # 读取视频
    def _get_vision_obj_byte(self, source, path):
        vision_obj_byte = None
        if source == "local":
            if os.path.exists(path):
                vision_obj_byte = open(path, "rb").read()
            else:
                vision_obj_byte = None
        if source == "base64":
            vision_obj_byte = base64.b64decode(path)
        if source == "url":
            vision_obj_byte = requests.get(url=path).content
        return vision_obj_byte
    
    # 将视频切分为帧,保存至子目录中
    def _split_video_to_frames(self, video_info, max_frame_number=-1, decode_way="1fps"):
        if decode_way=='1fps':
            frame_suffix = f'_frames'
        elif decode_way=='key':
            frame_suffix = f'_keyframes'
        else:
            raise ValueError('unvalid decode way!!!')
        
        server = "local"
        if 'local' in video_info.keys():
            # 本地路径
            video_path = video_info['local']
            # 帧保存本地路径
            frame_path = video_path[:video_path.rfind('.')] + frame_suffix
            mm_obj_byte = self._get_vision_obj_byte('local', video_path)
        elif 'base64' in video_info.keys():
            md5 = hashlib.md5(video_info['base64'].encode('utf-8')).hexdigest()
            if self.relative_path is not None: 
                video_path = os.path.join(self.relative_path, md5)
            else:
                video_path = os.path.join(os.getcwd(), md5)
            frame_path = video_path + frame_suffix
            mm_obj_byte = self._get_vision_obj_byte('base64', video_info['base64'])
        elif 'url' in video_info.keys():
            md5 = hashlib.md5(video_info['url'].encode('utf-8')).hexdigest()
            if self.relative_path is not None: 
                video_path = os.path.join(self.relative_path, md5)
            else:
                video_path = os.path.join(os.getcwd(), md5)
            frame_path = video_path + frame_suffix
            mm_obj_byte = self._get_vision_obj_byte('url', video_info['url'])
        else:
            raise ValueError('unvalid video server !!!')
            return ""
        
        if mm_obj_byte is None: # 未读取到视频文件
            return ""
        if not os.path.exists(frame_path) or len(os.listdir(frame_path))==0:
            # 保存帧
            os.makedirs(frame_path, exist_ok=True)
            frames, frame_times = read_video(io.BytesIO(mm_obj_byte), max_frame_number=-1, decode_way=decode_way) #读取全部帧
            for frame_idx, frame in enumerate(frames):
                output_filename = os.path.join(frame_path, f"{frame_times[frame_idx]}.jpg")
                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
                cv2.imwrite(output_filename, frame)
        frame_paths = os.listdir(frame_path)
        
        # 选取帧
        frame_times = [int(filename.split('/')[-1].replace('.jpg', '')) for filename in frame_paths if filename.endswith('.jpg')] # 文件名对应秒数
        frame_times.sort() #从小到大排序
        frame_number = len(frame_times)
        if frame_number > max_frame_number:
            indices = np.linspace(0, frame_number - 1, max_frame_number, dtype=int)
        else:
            indices = np.linspace(0, frame_number - 1, frame_number, dtype=int)
        # 拼接模式
        replace_str = ""
        for frame_idx, idx in enumerate(indices):
            frame_time = frame_times[idx]  # frame_time表示帧对应的时间 单位为s 同时也是存储的文件名
            frame_dict = {"local": os.path.join(frame_path, f'{frame_time}.jpg')}
            frame_str = self.frame_pattern.format(frame_idx) if '{}' in self.frame_pattern else self.frame_pattern  # {}对应的是第几张图片
            frame_str = frame_str.replace('<TIMEIDX>', str(frame_time))  # TIMEIDX对应的是第几秒
            frame_str = frame_str.replace('<TIMESTAMP>', time.strftime("%H:%M:%S", time.gmtime(frame_time)))  # TIMESTAMP对应的是时间戳
            frame_str = frame_str.replace('<frame>', f'{self.image_start_tag}{json.dumps(frame_dict)}{self.image_end_tag}')
            replace_str += frame_str
        
        return replace_str
    
    def sample_frame(self,frames_str,max_frame = 32):
        def uniform_sample(lst, num_samples):
            if num_samples > len(lst):
                return lst
            interval = len(lst) / num_samples
            samples = [lst[int(i * interval)] for i in range(num_samples)]
            return samples
        p = rf'({self.image_start_tag}.*?{self.image_end_tag})'
        frames_str_split = re.split(p,frames_str)
        frame_idxs = [idx for idx in range(len(frames_str_split)) if self.image_start_tag in frames_str_split[idx]]
        sample_frame_idxs = set(uniform_sample(frame_idxs, max_frame))
        return ''.join([item for idx,item in enumerate(frames_str_split) if idx in sample_frame_idxs or self.image_start_tag not in frames_str_split[idx]])

    def _get_video_frame_str(self, video_info):
        try:
            if self.videoframe_start_tag in video_info:#如果是以视频帧的形式表示一个视频,则替换成image tag
                frames_str = video_info
                frames_str = frames_str.replace(self.videoframe_start_tag,self.image_start_tag).replace(self.videoframe_end_tag,self.image_end_tag)
                return self.sample_frame(frames_str, max_frame = self.config.video_config.max_frame_num)
            video_info = ujson.loads(video_info)
            # 获取包含多帧图像路径的字符串,最大帧数量max_frame_number
            frames_str = self._split_video_to_frames(video_info, max_frame_number=self.config.video_config.max_frame_num, decode_way=self.config.video_config.decode_way)
            return frames_str
        except Exception as e:
            print("**** get video error: {}, info: {} *****".format(str(e), str(video_info)))
        return ""
    
    def _replace_image(self, image_text):
        image_info = re.sub(re.compile(self.image_start_tag + "|" + self.image_end_tag), '', image_text)
        ret = self._get_image(image_info)  # 重复取结果 cached result
        if ret.patch_nums is None:
            return ''
        return ret, self.image_start_tag + self.image_pad_tag * ret.patch_nums[0] + self.image_end_tag
    
    def _replace_video_frame(self, video_frame_text):
        video_frame_info = re.sub(re.compile(self.image_start_tag + "|" + self.image_end_tag), '', video_frame_text)
        ret = self._get_video_frame(video_frame_info)  # 重复取结果 cached result
        if ret.videos_patch_nums is None:
            return ''
        video_frame_str = [self.image_start_tag + self.video_place_tag * ret.videos_patch_nums[i] + self.image_end_tag for i in range(len(ret.videos_patch_nums))]
        return ret, ''.join(video_frame_str)
        
    
    def split_multimodal_chunk(self, text_list, mm_label_list, trainable_list, mtype='audio'):
        # 抽取text中的json格式音频/图像信息,读取并转化为特征,同时估计encoder token数,填入对应数量的pad token
        if (self.audio_start_tag != None) and (mtype == 'audio'):
            match_regex = re.compile(self.audio_start_tag + '.*?' + self.audio_end_tag,re.S)
            drop_regex = re.compile(self.audio_start_tag + "|" + self.audio_end_tag,re.S)
        elif (self.image_start_tag != None) and (mtype == 'image'):
            match_regex = re.compile(self.image_start_tag + '.*?' + self.image_end_tag,re.S)
            drop_regex = re.compile(self.image_start_tag + "|" + self.image_end_tag,re.S)
        elif (self.audiogen_start_tag != None) and (mtype == 'audiogen'):
            match_regex = re.compile(self.audiogen_start_tag + '.*?' + self.audiogen_end_tag,re.S)
            drop_regex = re.compile(self.audiogen_start_tag + "|" + self.audiogen_end_tag,re.S)
        elif (self.video_start_tag != None) and (mtype == 'video'):
            match_regex = re.compile(self.video_start_tag + '.*?' + self.video_end_tag,re.S)
            drop_regex = re.compile(self.video_start_tag + "|" + self.video_end_tag,re.S)
        else:
            raise ValueError("mtype not supportted!")
        new_text_list = []
        new_mm_label_list = []
        new_trainable_flag_list = []
        for text,mm_label,trainable in zip(text_list,mm_label_list,trainable_list):
            for t,m in zip(*split_text(text, match_regex)):
                new_trainable_flag_list.append(trainable)
                if m:
                    new_text_list.append(re.sub(drop_regex, '', t))
                    new_mm_label_list.append(mtype)
                else:
                    new_text_list.append(t)
                    new_mm_label_list.append(mm_label)
        return new_text_list, new_mm_label_list, new_trainable_flag_list
    
    def process_multimodal_chunk(self, text, mm_label, trainable):
        ret = OmniProcessorOutput()
        if mm_label == 'audio':
            ret = self._get_audio(text)
            if ret.bridge_length is not None:    
                ret.input_ids = self.tokenizer.encode(self.audio_start_tag,add_special_tokens=False) + self.tokenizer.encode(self.audio_pad_tag,add_special_tokens=False) * sum(ret.bridge_length) + self.tokenizer.encode(self.audio_end_tag,add_special_tokens=False)
            else:
                raise ValueError(f"Get audio data Failed at Process audio chunk {text}")
        elif mm_label == 'audiogen':
            ret = self._get_audio(text)
            if ret.bridge_length is not None:    
                ret.input_ids = self.tokenizer.encode(self.audiogen_start_tag,add_special_tokens=False) + self.tokenizer.encode(self.audio_pad_tag,add_special_tokens=False) * sum(ret.bridge_length) + self.tokenizer.encode(self.audiogen_end_tag,add_special_tokens=False)
            else:
                raise ValueError(f"Get audio data Failed at Process audio chunk {text}")
        elif mm_label == 'image':
            ret, input_str = self._replace_image(text)
            if input_str:
                ret.input_ids = self.tokenizer.encode(input_str, add_special_tokens=False)
            else:
                raise ValueError("Get image data Failed at Process image chunk")
        elif mm_label == 'video':
            frame_str = self.video_start_tag+self._get_video_frame_str(text)+self.video_end_tag
            ret, input_str = self._replace_video_frame(frame_str)
            if input_str:
                ret.input_ids = self.tokenizer.encode(input_str, add_special_tokens=False)
            else:
                raise ValueError("Get video data Failed at Process video chunk")               
        elif mm_label == 'text':
            ret.input_ids = self.tokenizer.encode(text, add_special_tokens=False)
            if len(ret.input_ids) > self.tokenizer.model_max_length-1:  # 过滤长文本
                raise ValueError(f"Text too long, please check text length! 【{text[:5]+'...'*6+text[-5:]}】")
        else:
            raise ValueError(f"mm_label not supportted! must in ['audio', 'audiogen', 'image', 'video', 'text'] but get {mm_label}")
        return ret
    
    def process_one(self, text, index=0, raw_only=False):
        ret = OmniProcessorOutput(index=index)
        all_text_list = []
        all_mm_label_list = []
        all_trainable_flag_list = []
        text_list, match_flag = split_text(text, re.compile("<trainable_start>.*?<trainable_end>",re.S))
        if len(text_list) == 1:
            text = re.sub(re.compile("<trainable_start>|<trainable_end>",re.S), '', text_list[0])
            all_text_list.append(text)
            all_mm_label_list.append('text')
            all_trainable_flag_list.append(True)
        else:
            for text, match in zip(text_list, match_flag):
                text = re.sub(re.compile("<trainable_start>|<trainable_end>",re.S), '', text)
                if text.strip() == '':
                    continue  # 把多余的空格干掉
                all_text_list.append(text)
                all_mm_label_list.append('text')
                all_trainable_flag_list.append(match)
        # 处理多模态信息
        for mtype in self.config.multimodal:  # 循环获取音频 图像结果 
            all_text_list, all_mm_label_list, all_trainable_flag_list = self.split_multimodal_chunk(all_text_list, all_mm_label_list, all_trainable_flag_list, mtype)
        if len(all_text_list) == 0:
            print(f"Process {text} chunk error: No valid Text data!!!!!")
            return OmniProcessorOutput(index=index)
        
        for text, mm_label, trainable in zip(all_text_list, all_mm_label_list, all_trainable_flag_list):
            try:
                mret = self.process_multimodal_chunk(text, mm_label, trainable)
                ret = ret.concatenate(mret)
            except ValueError as e:
                tt = text[:24].replace('\n','<LF>')
                print(f"Process {tt if mm_label == 'text' else text} {mm_label} chunk error: {str(e)}")
                return OmniProcessorOutput(index=index)

        if raw_only:
            ret.raw_text = self.tokenizer.decode(ret.input_ids, skip_special_tokens=False)
            return ret
        return ret

    @torch.no_grad()
    def __call__(self, example, parallel=128):
        if isinstance(example, Dict):
            pass 
        elif isinstance(example, str):
            return self.process_one(example)
        elif isinstance(example, List):  # batch推理 异步多线程处理
            with cf.ThreadPoolExecutor(min(parallel, len(example))) as executor:
                future_list = [executor.submit(self.process_one, di, idx) for idx, di in enumerate(example)]
                batch_data = [key.result() for key in cf.as_completed(future_list)]
            valid_num = sum([1 if x.input_ids is not None else 0 for x in batch_data])
            assert(valid_num == len(batch_data))  # 推理数据严格要求数量对齐
            batch_data = sorted(batch_data, key=lambda x: x.index)  # 保证顺序不变
            
            ret = OmniProcessorOutput()
            for i in range(len(batch_data)):
                ret = ret.concatenate(batch_data[i])
            self.tokenizer.padding_side = "left"
            max_len = min(max([len(x.input_ids) for x in batch_data]),self.tokenizer.model_max_length)
            padding_result = self.tokenizer.pad({"input_ids": [r.input_ids for r in batch_data]}, return_tensors='pt')
            ret.input_ids = padding_result["input_ids"]
            ret.attention_mask = padding_result["attention_mask"]  # batch推理不pack 不需要seqlens
            
            if ret.audios is not None:
                max_audios_len = max([x.shape[-1] for x in ret.audios])
                ret.audios = default_collate([np.pad(x, ((0,0),(0,max_audios_len - x.shape[-1])), 'constant', constant_values=0) for x in ret.audios])
            
                ret.encoder_length = default_collate(ret.encoder_length)
                ret.bridge_length = default_collate(ret.bridge_length)
            
            if ret.images is not None:
                ret.images = [torch.from_numpy(np.asarray(image, dtype=np.float32))  for image in ret.images]
                ret.patch_nums = default_collate(ret.patch_nums)
                
            if ret.videos is not None:
                ret.videos = [torch.from_numpy(np.asarray(image, dtype=np.float32))  for image in ret.videos]
                ret.videos_patch_nums = default_collate(ret.videos_patch_nums)

            return ret

        else:
            raise ValueError("example format supported yet")