GuoPD commited on
Commit
31e5192
1 Parent(s): 19e0fe7

add: add modeling code

Browse files
configuration_baichuan.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers.configuration_utils import PretrainedConfig
3
+
4
+ class BaichuanConfig(PretrainedConfig):
5
+ model_type = "baichuan"
6
+ keys_to_ignore_at_inference = ["past_key_values"]
7
+
8
+ def __init__(
9
+ self,
10
+ vocab_size=64000,
11
+ hidden_size=5120,
12
+ intermediate_size=13696,
13
+ num_hidden_layers=40,
14
+ num_attention_heads=40,
15
+ hidden_act="silu",
16
+ model_max_length=4096,
17
+ initializer_range=0.02,
18
+ rms_norm_eps=1e-6,
19
+ use_cache=True,
20
+ pad_token_id=0,
21
+ bos_token_id=1,
22
+ eos_token_id=2,
23
+ tie_word_embeddings=False,
24
+ gradient_checkpointing=False,
25
+ **kwargs,
26
+ ):
27
+ self.vocab_size = vocab_size
28
+ self.model_max_length = model_max_length
29
+ self.hidden_size = hidden_size
30
+ self.intermediate_size = intermediate_size
31
+ self.num_hidden_layers = num_hidden_layers
32
+ self.num_attention_heads = num_attention_heads
33
+ self.hidden_act = hidden_act
34
+ self.initializer_range = initializer_range
35
+ self.rms_norm_eps = rms_norm_eps
36
+ self.use_cache = use_cache
37
+ self.gradient_checkpointing = gradient_checkpointing,
38
+ super().__init__(
39
+ pad_token_id=pad_token_id,
40
+ bos_token_id=bos_token_id,
41
+ eos_token_id=eos_token_id,
42
+ tie_word_embeddings=tie_word_embeddings,
43
+ **kwargs,
44
+ )
45
+
modeling_baichuan.py ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ from torch.nn import CrossEntropyLoss
6
+ from transformers import PreTrainedModel
7
+ from transformers.activations import ACT2FN
8
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
9
+ from transformers.utils import logging
10
+ from transformers.generation.utils import GenerationConfig
11
+
12
+ from .configuration_baichuan import BaichuanConfig
13
+
14
+ logger = logging.get_logger(__name__)
15
+
16
+ def _get_interleave(n):
17
+ def _get_interleave_power_of_2(n):
18
+ start = (2 ** (-2 ** -(math.log2(n) - 3)))
19
+ ratio = start
20
+ return [start * ratio ** i for i in range(n)]
21
+
22
+ if math.log2(n).is_integer():
23
+ return _get_interleave_power_of_2(n)
24
+ else:
25
+ closest_power_of_2 = 2 ** math.floor(math.log2(n))
26
+ return _get_interleave_power_of_2(closest_power_of_2) + \
27
+ _get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
28
+
29
+ def _fill_with_neg_inf(t):
30
+ """FP16-compatible function that fills a tensor with -inf."""
31
+ return t.float().fill_(float("-inf")).type_as(t)
32
+
33
+ def _gen_alibi_mask(n_head, max_pos):
34
+ slopes = torch.Tensor(_get_interleave(n_head))
35
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
36
+ n_head, -1, -1)
37
+ alibi = alibi.view(n_head, 1, max_pos)
38
+ alibi_mask = torch.triu(
39
+ _fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
40
+ )
41
+ alibi_mask = alibi_mask.unsqueeze(0) + alibi
42
+ return alibi_mask
43
+
44
+
45
+ class RMSNorm(torch.nn.Module):
46
+ def __init__(self, hidden_size, epsilon=1e-6):
47
+ super().__init__()
48
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size))
49
+ self.epsilon = epsilon
50
+
51
+ def forward(self, hidden_states):
52
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
53
+ hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
54
+
55
+ # convert into half-precision
56
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
57
+ hidden_states = hidden_states.to(self.weight.dtype)
58
+
59
+ return self.weight * hidden_states
60
+
61
+
62
+ class MLP(torch.nn.Module):
63
+ def __init__(
64
+ self,
65
+ hidden_size: int,
66
+ intermediate_size: int,
67
+ hidden_act: str,
68
+ ):
69
+ super().__init__()
70
+ self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
71
+ self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
72
+ self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
73
+ self.act_fn = ACT2FN[hidden_act]
74
+
75
+ def forward(self, x):
76
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
77
+
78
+
79
+ class BaichuanAttention(torch.nn.Module):
80
+
81
+ def __init__(self, config: BaichuanConfig):
82
+ super().__init__()
83
+ self.config = config
84
+ self.hidden_size = config.hidden_size
85
+ self.num_heads = config.num_attention_heads
86
+ self.head_dim = self.hidden_size // self.num_heads
87
+ self.max_position_embeddings = config.model_max_length
88
+
89
+ if (self.head_dim * self.num_heads) != self.hidden_size:
90
+ raise ValueError(
91
+ f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
92
+ )
93
+ self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
94
+ self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
95
+
96
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
97
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
98
+
99
+ def forward(
100
+ self,
101
+ hidden_states: torch.Tensor,
102
+ attention_mask: Optional[torch.Tensor] = None,
103
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
104
+ output_attentions: bool = False,
105
+ use_cache: bool = False,
106
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
107
+
108
+ bsz, q_len, _ = hidden_states.size()
109
+
110
+ proj = self.W_pack(hidden_states)
111
+ proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
112
+ query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
113
+ key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
114
+ value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
115
+
116
+ kv_seq_len = key_states.shape[-2]
117
+ if past_key_value is not None:
118
+ kv_seq_len += past_key_value[0].shape[-2]
119
+
120
+ if past_key_value is not None:
121
+ # reuse k, v, self_attention
122
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
123
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
124
+
125
+ past_key_value = (key_states, value_states) if use_cache else None
126
+
127
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
128
+
129
+ if attention_mask is not None:
130
+ if attn_weights.size(-2) == 1:
131
+ attention_mask = attention_mask[:, -1:, :]
132
+ attn_weights = attn_weights + attention_mask.unsqueeze(0)
133
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
134
+
135
+ attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
136
+ attn_output = torch.matmul(attn_weights, value_states)
137
+
138
+ attn_output = attn_output.transpose(1, 2)
139
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
140
+ attn_output = self.o_proj(attn_output)
141
+
142
+ if not output_attentions:
143
+ attn_weights = None
144
+
145
+ return attn_output, attn_weights, past_key_value
146
+
147
+
148
+ class BaichuanLayer(torch.nn.Module):
149
+ def __init__(self, config: BaichuanConfig):
150
+ super().__init__()
151
+ self.hidden_size = config.hidden_size
152
+ self.self_attn = BaichuanAttention(config=config)
153
+ self.mlp = MLP(
154
+ hidden_size=self.hidden_size,
155
+ intermediate_size=config.intermediate_size,
156
+ hidden_act=config.hidden_act,
157
+ )
158
+ self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
159
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
160
+
161
+ def forward(
162
+ self,
163
+ hidden_states: torch.Tensor,
164
+ attention_mask: Optional[torch.Tensor] = None,
165
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
166
+ output_attentions: Optional[bool] = False,
167
+ use_cache: Optional[bool] = False,
168
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
169
+
170
+ residual = hidden_states
171
+
172
+ hidden_states = self.input_layernorm(hidden_states)
173
+
174
+ # Self Attention
175
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
176
+ hidden_states=hidden_states,
177
+ attention_mask=attention_mask,
178
+ past_key_value=past_key_value,
179
+ output_attentions=output_attentions,
180
+ use_cache=use_cache,
181
+ )
182
+ hidden_states = residual + hidden_states
183
+
184
+ # Fully Connected
185
+ residual = hidden_states
186
+ hidden_states = self.post_attention_layernorm(hidden_states)
187
+ hidden_states = self.mlp(hidden_states)
188
+ hidden_states = residual + hidden_states
189
+
190
+ outputs = (hidden_states,)
191
+
192
+ if use_cache:
193
+ outputs += (present_key_value,)
194
+
195
+ return outputs
196
+
197
+
198
+ class BaichuanPreTrainedModel(PreTrainedModel):
199
+ config_class = BaichuanConfig
200
+ base_model_prefix = "model"
201
+ supports_gradient_checkpointing = True
202
+ _no_split_modules = ["BaichuanLayer"]
203
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
204
+
205
+ def _init_weights(self, module):
206
+ std = self.config.initializer_range
207
+ if isinstance(module, torch.nn.Linear):
208
+ module.weight.data.normal_(mean=0.0, std=std)
209
+ if module.bias is not None:
210
+ module.bias.data.zero_()
211
+ elif isinstance(module, torch.nn.Embedding):
212
+ module.weight.data.normal_(mean=0.0, std=std)
213
+ if module.padding_idx is not None:
214
+ module.weight.data[module.padding_idx].zero_()
215
+
216
+ def _set_gradient_checkpointing(self, module, value=False):
217
+ if isinstance(module, BaichuanModel):
218
+ module.gradient_checkpointing = value
219
+
220
+
221
+
222
+ class BaichuanModel(BaichuanPreTrainedModel):
223
+ def __init__(self, config: BaichuanConfig):
224
+ super().__init__(config)
225
+ self.padding_idx = config.pad_token_id
226
+ self.vocab_size = config.vocab_size
227
+ self.n_head = config.num_attention_heads
228
+ self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
229
+ self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
230
+ self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
231
+
232
+ self.gradient_checkpointing = config.gradient_checkpointing
233
+ self.post_init()
234
+ self.max_cache_pos = config.model_max_length
235
+ self.first_run = True
236
+
237
+ def get_alibi_mask(self, tensor, seq_length_with_past):
238
+ if self.first_run:
239
+ self.first_run = False
240
+ self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
241
+ if (seq_length_with_past > self.max_cache_pos):
242
+ self.max_cache_pos = seq_length_with_past
243
+ self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
244
+ mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
245
+ return mask
246
+
247
+ def forward(
248
+ self,
249
+ input_ids: torch.LongTensor = None,
250
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
251
+ inputs_embeds: Optional[torch.FloatTensor] = None,
252
+ use_cache: Optional[bool] = False,
253
+ output_attentions: Optional[bool] = False,
254
+ output_hidden_states: Optional[bool] = False,
255
+ return_dict: Optional[bool] = True,
256
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
257
+
258
+
259
+ if input_ids is not None and inputs_embeds is not None:
260
+ raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
261
+ elif input_ids is not None:
262
+ batch_size, seq_length = input_ids.shape
263
+ elif inputs_embeds is not None:
264
+ batch_size, seq_length, _ = inputs_embeds.shape
265
+ else:
266
+ raise ValueError("You need to provide input_ids or inputs_embeds")
267
+
268
+ seq_length_with_past = seq_length
269
+ past_key_values_length = 0
270
+
271
+ if past_key_values is not None:
272
+ past_key_values_length = past_key_values[0][0].shape[2]
273
+ seq_length_with_past = seq_length_with_past + past_key_values_length
274
+
275
+ if inputs_embeds is None:
276
+ inputs_embeds = self.embed_tokens(input_ids)
277
+
278
+ # embed positions
279
+ attention_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
280
+
281
+ hidden_states = inputs_embeds
282
+
283
+ if self.gradient_checkpointing and self.training:
284
+ if use_cache:
285
+ logger.warning_once(
286
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
287
+ )
288
+ use_cache = False
289
+
290
+ # decoder layers
291
+ all_hidden_states = () if output_hidden_states else None
292
+ all_self_attns = () if output_attentions else None
293
+ next_decoder_cache = () if use_cache else None
294
+
295
+ for idx, decoder_layer in enumerate(self.layers):
296
+ if output_hidden_states:
297
+ all_hidden_states += (hidden_states,)
298
+
299
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
300
+
301
+ if self.gradient_checkpointing and self.training:
302
+
303
+ def create_custom_forward(module):
304
+ def custom_forward(*inputs):
305
+ # None for past_key_value
306
+ return module(*inputs, output_attentions, None)
307
+
308
+ return custom_forward
309
+
310
+ layer_outputs = torch.utils.checkpoint.checkpoint(
311
+ create_custom_forward(decoder_layer),
312
+ hidden_states,
313
+ attention_mask,
314
+ None,
315
+ )
316
+ else:
317
+ layer_outputs = decoder_layer(
318
+ hidden_states,
319
+ attention_mask=attention_mask,
320
+ past_key_value=past_key_value,
321
+ output_attentions=output_attentions,
322
+ use_cache=use_cache,
323
+ )
324
+
325
+ hidden_states = layer_outputs[0]
326
+
327
+ if use_cache:
328
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
329
+
330
+ if output_attentions:
331
+ all_self_attns += (layer_outputs[1],)
332
+
333
+ hidden_states = self.norm(hidden_states)
334
+
335
+ # add hidden states from the last decoder layer
336
+ if output_hidden_states:
337
+ all_hidden_states += (hidden_states,)
338
+
339
+ next_cache = next_decoder_cache if use_cache else None
340
+ if not return_dict:
341
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
342
+ return BaseModelOutputWithPast(
343
+ last_hidden_state=hidden_states,
344
+ past_key_values=next_cache,
345
+ hidden_states=all_hidden_states,
346
+ attentions=all_self_attns,
347
+ )
348
+
349
+
350
+ class BaichuanForCausalLM(BaichuanPreTrainedModel):
351
+ def __init__(self, config):
352
+ super().__init__(config)
353
+ self.model = BaichuanModel(config)
354
+ self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
355
+
356
+ # Initialize weights and apply final processing
357
+ self.post_init()
358
+
359
+ def forward(
360
+ self,
361
+ input_ids: torch.LongTensor = None,
362
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
363
+ inputs_embeds: Optional[torch.FloatTensor] = None,
364
+ labels: Optional[torch.LongTensor] = None,
365
+ use_cache: Optional[bool] = None,
366
+ output_attentions: Optional[bool] = False,
367
+ output_hidden_states: Optional[bool] = False,
368
+ return_dict: Optional[bool] = True,
369
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
370
+
371
+
372
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
373
+ outputs = self.model(
374
+ input_ids=input_ids,
375
+ past_key_values=past_key_values,
376
+ inputs_embeds=inputs_embeds,
377
+ use_cache=use_cache,
378
+ output_attentions=output_attentions,
379
+ output_hidden_states=output_hidden_states,
380
+ return_dict=return_dict,
381
+ )
382
+
383
+ hidden_states = outputs[0]
384
+ logits = self.lm_head(hidden_states)
385
+
386
+ loss = None
387
+ if labels is not None:
388
+ # Shift so that tokens < n predict n
389
+ shift_logits = logits[..., :-1, :].contiguous()
390
+ shift_labels = labels[..., 1:].contiguous()
391
+ # Flatten the tokens
392
+ loss_fct = CrossEntropyLoss()
393
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
394
+ shift_labels = shift_labels.view(-1)
395
+ # Enable model parallelism
396
+ shift_labels = shift_labels.to(shift_logits.device)
397
+ loss = loss_fct(shift_logits, shift_labels)
398
+
399
+ if not return_dict:
400
+ output = (logits,) + outputs[1:]
401
+ return (loss,) + output if loss is not None else output
402
+
403
+ return CausalLMOutputWithPast(
404
+ loss=loss,
405
+ logits=logits,
406
+ past_key_values=outputs.past_key_values,
407
+ hidden_states=outputs.hidden_states,
408
+ attentions=outputs.attentions,
409
+ )
410
+
411
+ def prepare_inputs_for_generation(
412
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
413
+ ):
414
+ if past_key_values:
415
+ input_ids = input_ids[:, -1:]
416
+
417
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
418
+ if inputs_embeds is not None and past_key_values is None:
419
+ model_inputs = {"inputs_embeds": inputs_embeds}
420
+ else:
421
+ model_inputs = {"input_ids": input_ids}
422
+
423
+ model_inputs.update(
424
+ {
425
+ "past_key_values": past_key_values,
426
+ "use_cache": kwargs.get("use_cache"),
427
+ }
428
+ )
429
+ return model_inputs
430
+
431
+ @staticmethod
432
+ def _reorder_cache(past_key_values, beam_idx):
433
+ return tuple(
434
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
435
+ for layer_past in past_key_values
436
+ )
437
+
438
+
439
+ def quantize(self, bits: int):
440
+ try:
441
+ from .quantizer import QLinear
442
+ except ImportError:
443
+ raise ImportError(
444
+ f"Needs QLinear to run quantize."
445
+ )
446
+
447
+ for layer in self.model.layers:
448
+ layer.self_attn.W_pack = QLinear(
449
+ bits=bits,
450
+ weight=layer.self_attn.W_pack.weight,
451
+ bias = None,
452
+ )
453
+ layer.self_attn.o_proj = QLinear(
454
+ bits=bits,
455
+ weight=layer.self_attn.o_proj.weight,
456
+ bias = None,
457
+ )
458
+ layer.mlp.gate_proj = QLinear(
459
+ bits=bits,
460
+ weight=layer.mlp.gate_proj.weight,
461
+ bias = None,
462
+ )
463
+ layer.mlp.down_proj = QLinear(
464
+ bits=bits,
465
+ weight=layer.mlp.down_proj.weight,
466
+ bias = None,
467
+ )
468
+ layer.mlp.up_proj = QLinear(
469
+ bits=bits,
470
+ weight=layer.mlp.up_proj.weight,
471
+ bias = None,
472
+ )
473
+ return self
474
+
475
+ def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=0):
476
+ max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
477
+ max_input_tokens = self.config.model_max_length - max_new_tokens
478
+ max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
479
+ total_input, round_input = [], []
480
+ for i, message in enumerate(messages[::-1]):
481
+ content_tokens = tokenizer.encode(message['content'])
482
+ if message['role'] == 'user':
483
+ round_input = [self.generation_config.user_token_id] + content_tokens + round_input
484
+ if total_input and len(total_input) + len(round_input) > max_input_tokens:
485
+ break
486
+ else:
487
+ total_input = round_input + total_input
488
+ if len(total_input) >= max_input_tokens:
489
+ break
490
+ else:
491
+ round_input = []
492
+ elif message['role'] == 'assistant':
493
+ round_input = [
494
+ self.generation_config.assistant_token_id
495
+ ] + content_tokens + [
496
+ self.generation_config.eos_token_id
497
+ ] + round_input
498
+ else:
499
+ raise ValueError(f"message role not supported yet: {message['role']}")
500
+ total_input = total_input[-max_input_tokens:] # truncate left
501
+ total_input.append(self.generation_config.assistant_token_id)
502
+ total_input = torch.LongTensor([total_input]).to(self.device)
503
+ return total_input
504
+
505
+ @torch.no_grad()
506
+ def chat(self, tokenizer, messages: List[dict], stream=False,
507
+ generation_config: Optional[GenerationConfig]=None):
508
+ generation_config = generation_config or self.generation_config
509
+ input_ids = self._build_chat_input(tokenizer, messages, generation_config.max_new_tokens)
510
+ if stream:
511
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
512
+ self.__class__.generate = NewGenerationMixin.generate
513
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
514
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
515
+
516
+ def stream_generator():
517
+ outputs = []
518
+ for token in self.generate(input_ids, generation_config=stream_config):
519
+ outputs.append(token.item())
520
+ yield tokenizer.decode(outputs, skip_special_tokens=True)
521
+
522
+ return stream_generator()
523
+ else:
524
+ self.__class__.generate = PreTrainedModel.generate # disable stream
525
+ outputs = self.generate(input_ids, generation_config=generation_config)
526
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
527
+ return response
quantizer.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import List
3
+ import bz2
4
+ import base64
5
+ import ctypes
6
+ from transformers.utils import logging
7
+ logger = logging.get_logger(__name__)
8
+
9
+ try:
10
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
11
+
12
+ class Kernel:
13
+ def __init__(self, code: bytes, function_names: List[str]):
14
+ self.code = code
15
+ self._function_names = function_names
16
+ self._cmodule = LazyKernelCModule(self.code)
17
+
18
+ for name in self._function_names:
19
+ setattr(self, name, KernelFunction(self._cmodule, name))
20
+ quantization_code = "QlpoOTFBWSZTWX/mUzwAK6f///////////////////////////////7f////////////4C5duvi2D0Oj1ppVCJ2zQFYbnbsxmq20pAC7kEDb3Z3nWrextY9NZbavON7nveSRqszudmzAGGgkeh0Pewk881e3Tz13kW9YO7uA9AUUiAWLNW2HHWCE005Mdz3jHs1Ic7QNCQBNGgmE000DRNoGjUYmA0mEmJjIaI9JtT0JoaaMTaQ0aMjTTI1TzKMmETwyaJ6k8p4Ke1T0wk2aE0anpPSHppqNM1HqYzVGj0MpsTTUGpoCAAEyAAAmhpPSYowMk9U8mqb0mJtU8ETwCZT1DQ9R5R6htE9TTyRptQeoyHqA0B6g9T1AD1HpGQGgD1A0NPUAAAA0A1Mg00gmhKPU9E2SekHoJ5QHlNDEPUeoDEaBkAHqBoABoNABoAaGgBoAAAAAAA0AAAAAAAAEmoiIgmiD0maRip+qfpR+k9U/QKaZPUepiGeST1HqeU9TQ9JoANAMhoZPU0AAYnqaBoAANABoAAAADQGgAAADTQ0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJEE0AJo0GkxGJoZNKeBoTCnpNNpU9knqn+ppmUnom1PKZqTaaTTwTTFPNJ6pj1BG0eoaMgwQGkYAGk2gjT0jBqaY0RoDeqZoNEYT1NpsA/+iBrt+OVIiCKqfH7N/e67XZ2Dx9tPHyWbW4gAENNTtyzk+/WdoU604SoXU0JgfqgQxVmzbfdmaFcVxQAYINDyjTKU1FCUUzUuqqptg4SBgwIAHYE4NwQOrbY1bOF26LUVuxYr3Hp4paZXaqKU1UmXO3K+IXn2hURrgAegAaTANS+QBclUN6tpvhn85+uTPCLxzj34YO8MIMg45eRAEy9IYbKxeZTRnTy6GpPLtVGWKKK6iuDLa9wjtSmUQREX6wHfE3JeTVZdoj4Hg/3cHlBdw4c4BdGvigzZsubPr3eTi2hs6tZz3J9zUVm8qH+FPwSx4Tdr6by/OA88iLHk34rWNt7fT7NwqqqqqqqrGMYxjFcdqvY2mXyh42c2ccxhtyvBHojjUlyAKRgbvAB6nhls1wGLTOrfGMBsqRXl9Bl3sOlvafSA7sDrmAQI+mw90af+bvJ8mwjP+RKtjobGNzbfl76iTHMiIIUf9oIoygqSG2NLn0Ys/mZ+hzufu7epmzbvP1t7S0Xo8TKK7q6G5MA8vTgBb7Bf/2kITSLsH7Xmfydz7ahAt4YJbBuAQJI+1M8DLJCQH+UPbv212QWIhcCKhBrR2eryfQYIiIhKE0WtbOQ7OwM7OxtURGbF28NBndi9ejVDVA3dne37uDdzrwINS+O/0AzQTCgUjfCAwkkKFMT4Kr0aV3DicVAelGBesGYoCRcLKq5iBFR6SzOzrAwFWDFVYU2XT1oFaRJk2JBDOwVk1LFZZfwY7tQBYMGdECFA1cLZAg0IlfCTCMgZ4afRQBNvXSuMORVUTxTLSTgMFoUtaGLIr524yIM+INSFFIOHQ4TG5NZbd3Su3Nu9raSLd/ueibSYpAL0D42ZkAtD0pnXrfTxYPBw+mAt1cKPCPmDNMCDYCBiQwmANVhdDjBwsdIKyfH1slCvWbJC4QO8SBxi6A+GEpDBN6UQnPaEvBqFk3TwChKSowEENpyAueDIFs6OxxLRmFSUFpjWgYpECgDgfVBJjhg4GGcI9CD0S3igCrdziS3ZoYHlQE+7AELdvbebTVsdRvrPHCgiAbSYzUN0z0SCshLjaUaREEREQQRHNKAgAS9o0kukdJx0ulaJk0kINzlUYN0wWXLLsmRgSG1BEJNh5sCuVtIybGlKUW29BziJUTpqcA8UCCLtOGU0hH17BYTERfPKhCAwxJqSSSMd+umawlsykXZiKHesslqlVDKEHPzFhIWwJHTfcYCGE9dQK9sKixjNifLkW1iLnyZo57BBx2jksXPYjcaA6Z6rlYTl9ocZHn2URKVXnY/Wsrc5l3aym6Uq7u9eu2szSbJgwhqPqfOR1JCCZl7/AehLVBSIXc9npUk8IDzrRCS9XKMeamSDmFxK6OQDhwNnxubbnQygQb4DEL6oD5qkkG6F03dyDAUJB/awNUoDCa3CmYy2QIsK0Z46BoX1N4kY8aGNFB8WZAfWvaHeUT4gYIjEsZBBARIFAk2jCTxAmpW03GtdW4WCN0bLJiiqY3ixmHAWRqqQKqgS2hlf8mwszkhUy3LDx3GLdo5AHGAgC4BogUAVgH4QM0AGAImwbS6gwANIep0rJIU3hBgaeKAEcnzfs+g/sJZnETvInDcAH5fE7azmr8EyIFx77caxbrDBC64CEU8wCqzAHPgkk4kiPREKYHn2HaoDBWCCrFBrhR+XpeNQkdbzCBHee2hW8EW373k/qd/PxGC2R+IO4vmNEAl1AE0l4bEvmnfd5/JYs5gl9XpgQIS7g/LAK7owBwgso9j0yEB9MRIBjqmkLdG5uED3tICA6PYXe4WItRawAenfJ0lCFupoGvajxuQC/5YQPnwFpgQBMNgBndpgVNJcyw+5vCJgHtWU0EDYk2HsvD8Qkg6ANAd8UQXGH/3X3gXgNDefHyaQ/wd93Xx87hWWtW0kPCQGR+KYiPeMQse27PdNLGwhlz8WJObSnEQyHJw1JmStJXTtIg0ZKEHrLZCXd1ljLGkkxtpsDofXUiBH0LLEM43kb2waJ26KZsJ9sBbxcAqzUgWxzogNFm4vSxjMR58r5Xm8H2+6ItGcNX2AK3GhDIMzSX3YyFsbNG0u0MxvZzGFv19k2E45tXrK+1OKUYRiH2OT2Fs7kqtxMDrANVp2nxreAZg02UaFEsuf6+urQi1PxvNOhuacrStndOnonV3e5Du+Xjp8mjhiHYPNexu7UKSbt0Gs2rPIVVVSFyQ7phtQ0ZOUySoyZA79muzuLBZaLAW20gZIeuJDacErguFE3e70svo0S0mRBMBu33rjqVrNEN9A5PHvOgukEPEgb0tYAMrvcvIXB5ydzJHXQ1n+t7BUI24oJtSCTAUet75rBpXL4ylQ4LGBpbQeQCiOku+8rq90o18ga4WEGBDhvHB0YYd/CDLIMdDh2cO/i/RppcEi3Zd+CCU8OdxAAiOgi5qeghJkUnO6YGZi5LEilo2WhSiEVsU2IK7unV2rXG61Q/LbUqGx72rn2Uzx/q/fzsCWUFCQyAA+XqfGVGvL1kml0MVpjJl1A9vYoYTSatnV1+z2czsdoc4QFWLILHn1S71/r3V1S/fJMgDlXX6DVv8+FeECNi1u8zf8K8r1Khq7twFu5xPfZJT+PLpYUZWgGNDG0Jlq4rsQy86u95xqTdO0TbSGBdDOUSyyGHQAmP5mgNfVvgeY2tPzlKbyrvnaZhgQ7aWeJjzbF4mjPlro1hYjmnWUshKxVsQ6pveK850taANOgIE/aJvr0IAC0g2H2d1agVwnBkAF1kl7IPZc8mBthvlYish4AqABgI9hw2cExRabO+8Xz31+enwlCxSbnfVFlqig3UKGBQiybpEBGQLIxuoUMVYLTt53sY+lPlxSAq9f3lfnVlFmiBFrOhAeAF/0/N6HI6/+rsQ2+D5U5fenadDmtFFgeZLLESwOgWWIlgWFo+uFROhke3lKQ4bf0mLH3XSOgtDGd73hfMwDM2aF7Lonl7AlbiPbV2zY2lvu1Vj7jzlmFYoKieH93wt3fLhBXgYUGJEjga5YWEVyE00qIYWXSKd0ZaZy+vuCQlhaz5ELs9n/pjuFAHpoDCMEEtseECQF+Rk58EyW3nzCdlyCeY5WPItdkDZ4egXmjfZTLSVT29ku6KCGxHbdTBD3z52SxkuXkpoaHyy3t25+JwX5zFdYawDASl7397IB2tunNbt2FygaTBIO5qrG0asQmxEVRGCn26UX6DewTmic/QqkLZjdCTqjQDGlxy4IODucyQlmE0zkwSkR02cZjZcA1MzMczZAf1hfPnZT1IGtWIJGOcpzgYwCGyiNtoxRkupRElCCAgWJcE4igRJEQogPHYVAVBAEYDBkUEBIOSMK3KJNwQllpqWZARLCgMM8TkQoHOSZTDbSrjS6QtkYsQSloWSmQ4BlMjEJuuWh0ERMIVRLbcNDDQalLRQiEoBIUKZaiQpZQ1KoooVlNtjVVGAsG6WkNS84MJcoYIgjBrKaODOaUZG6QUZlCUGKy25MUVYGMWC+95zG4FRE0iyDRISulc0GQJt6m5u8WSQD4NAiDAMD9y0Q4TBGAaAIGe6PfdX9zl9Xginufp+HmPiAGfY8ZoDAarMoQAD9kA2OUJQV3lBq86RzpT8nbXPtqxsvN4YTDyOQgGEarV4Tc5h1yv2Npz+65PJpxO/Tefe5S5U1n8asAC3AQIACrUA5XacxgALbHvUfi9ApR956Do3PCWymCzTo7JjufU9DsGcQWqAFwwZfDzR+m6436pzvncYkARkLKOxX23RuLsQeK067Y/Fq8tB7igBMvb836/03fkV4qZ5YY4pFxADLifQb2iaUAwjesDs8Nhx5vnIw3rZOyb9+jyaYazgr2vbSKuf82URMcyf+99L2sWJHqW/I0PfaMR0KsULcnf9Lx/fJFzattuUwcjv8vdJed+FY1s49FrvJMbRVa82imzbdgSpDhEtleDphWrjgzVu59jsXKG/3f88zolkjqRQUk+Xm8F72190OzfqwfT5XAYbvq8WBzq/B+4rLP8j5PDfiytkicVOAAJ6QOe+hWqqwgfq61qtJ7jrsz89u1dDqsK/9Wur9Po5K1vHsXseRHoyF+LoewZ3uHaanw5S9LCW9Gj8k3e5ObY3NfjabO0cbzotaAPB3XIg+av5zaHst8ijMqapTpVtdwy211QZINMi1UCIHnAB3ZLFDZQuraVlNALggow5ygAhEo9EDHUCSm8+Hhev7eTufm8onZ7pATIUwBEBBUUEPBw/zcrl+pwtDJe2XApoPk8CJjTqtqbv7DYwZWFs/M8EhDcYE8AK8A+GfX/aQkYgSLdftV0Id/5gf3lOuNNC0799E3uYYtpMg6yABaJz5en+HpUfveNBXeYA8Whj8TtZK60F8V863ndv3PwKagCzpXtfv1APjaUgxkGLtptiZPR9vldS2Bfy0pT3RXWJlLCCj+GpAz28S4v0YQrYE7We9WpbVXz7KVTWEtoXM/UPZhYnpzdeokWJdNHQ6JQLxp7bOfci50rBcdOdhOqmyeC7B2rL6rxd969Xxc9L4zMrsqZ0+DoaPeSn8Y5QMLTOLpdvz1qaOO5xT1xPjgKnhTYa5pzi5U+bDcHXzYdxpgAbbhf/e8aBprxka5aM2J3lYXBG5G/r7CunzcPyjz2o79z8eDKkMvdO9WixswXLu3TkpoYcV0465fwUxoxC6L9Zwc+QsLDfqipk3wMSSRkBPM8Bxrwt0Mjr4IWW9Tw+Kw23yTbUyYJqrgNaq7saBKAdzYXMQ6mkrfqt72Lk0YwiZmIKkXUgChISCZMMrwdnjWbJDoR5ZXGxxAX5uRBfHBOk6JS8VVVWd56zxf8v3uR0/zON57e6BDuqIcQDJ7H0q5BNPaWbExYw2Bj4tRM9kB+JfynyyEfR/7ZiPXRFLmwpGGjLF9G6/J65mkUZEaKrUdBZYUxFKqGJL4LAbEfZjLi4GYXhv+x3ZpHkC3YADdMsKeYmfKgtzUd+Y7dVngbdcEFGAL3VqaYfYAYMtY3YKIQumTVXUFTFQyU0bqIeMgV2WOcZFXICpoMvueYVy0mHAiaeyNg1p5/QmSbYgyb7WQdUPfY3QeKc0hewGB2z2vH9t+pvy7B6P21pG+wXCMQHZl30TJonLPhQg8nka+raw1OLPUVWvIidrloKjcLH6/YAwepAoWEykQ9Bw2+YU/N5dbXnsNcPbubOszstYSwQYATYulLN0AHAgwb5t+VfATV6uhICgRgDGUaoVNNLc9ZMMW5+qKVhOyoRMLzJolo17ACLDPes+aoyeD5aIZm46HHKV7KqGX1IGbYEEDaAh0Vj+43wIMep+e+gsP4UEgVjmMAWTPz2XZhQDA6/Vzbk0fK+v0+bNB12LRbfmsufKzRgw7Hp7b+J+N2LqWXdwWTvhQ2rIPjc2cgS2A4Ub7IflPitJFAPyFvbvHK+tXi0Zcbi6mO6HTaIydOeYDmSYUIACAZwJCEgueoJnU7W6WfGdWtl1TdD4WHQ8AgDnmNUD+2YrjxNum3+1R9B+XSiSGrVLcFrVC/Z9R7D8DslIGyMPXbJAFthAMNYs7OdlqPilZtnwtReItC2Ff5vD8mQHwayX/vh1LB+HwoefoZ6LWUKb7WH6D0FmEhEKgwAayAYsoKUCcPepjDQYfA2TMWHoiS1lspYmEi2HdFULic/ucQlrFCCwPxyDeITAUsiAUFggCtZuDuVPLvVtM4WCG6DlrLwBL1JAaQFWuf7/uHZ1WAHEBuz9BMrshS8OhZpwrmYpgUIFoauEJQxtrw2iu9bT1ZLik/F26jhZblz7739qomvexIWc5hKq/GfFAebrnq/23mGuisbZhiROtNdFBDwqCBc2zrTYMfhMPwIF0s37CzzvYKeLjIfQZ3D2N6o+FRgDOkDGFGjCDiy9cJBVMOBWJ1AjDIxTAz/LwSRYuyzhHyDiECf0P53hWshYcMslf0PC0tWfLlUztN1xTxhwgkAudx+IE+NuS3phgEhRBo5lXEG6KhGydUzSU2WphfuFy0VkjH2AIPddbJ679s70tkL1rBEEEEmFgwK5pRCB6ZC5EX7ZCkCTI1pQUDJAwhQoosjBZFAjelFmydnwH9j46Ei5DD9ZaOvgT54UpSh4mD7FR2rjbJjFFdyOauUAjNr/DYBQJkLsUsd2mAXDIMHOuu8ULJhkx21G0UL7fnlqIPfiwdblRpcEaxVjru+6bHpdvj38qAOr1rUACbHrKGDWLFjGCBGYoGREGZBh4aGauRARRTmJdfJBWYoCDdFrBtCgYo6H8NyRIvFfbeTFjxF9riIiIiJABkRljjGMYx1mizcSoJ9AAFqKHXgBBgYnYjs06fFb2fl/bceQ8TeN4h1jrKPd/Pbtl3dl3fnbu7u7u7u7u7u7u7u7u79ZxeoA2gbgjyqd70779v47Lsepzo6y18vJkhQMaDKDNhYbWPpJA6hsD3pzguE4gtOhzrtDoDA3oMbPVBY/3fi0DbkWt7GQwMw2BtpNpeKt+v6KytGxxqCQ8JoLCGKIALFxqwIOeI7fqckjnW8eHjcW3xehEp2SWhvmrtDDdoBSOn6jSjQCgLuhd+EBOwr3q9GbUewJDA4QvH+DpFwt+JbtP30yJTy10KFMLT8MmAGUKkqn3DQHSmTACxjEheIpDhGuZT/WrsHgP+ly7Bsto8UYb2bBvwPRV1O/WaEbmIEMEbQtfphLgUDADF7nayfXs1CXBxYOi1aG36B7rr5EX31tzoym2bTIWw0maxvM3Gs+KAOSMztimS4oGQokBRf5dGKNykDp8tH9chWc9k7/6I+SxG5cZSnx52CFhoDqaZ8wBethxjRVKaRfCZTeBpi6ZNdZFjROy9x6tdgMem0rtuH6wbAz9tKvlhJ0JUP1e+2xVgroJFw8tQxLPdwVnLVMDu+mmfk9b5mK3qMNwiMyBqFaajMIgCDBYUXbdKwwVVhoMXL5YLkI5FFviIkYQTNamuapRILAqCSAYSsIOOVAtAUUrDwBSthRBgyVAM1wBrIQhhTlJKQIwFnj+b+aXuJyerhwx7HxQLofddtH71c6UuefecFIrANhfgkaIt5KL4iV43tMeP17BD8D7Dl8+AQTGQfz/rp3JWOfDodJOcvDAquYl1QQiHknUmAQ3lYpRUtJEUowXnnJnOZjZzdINlj+y7lXBb2uPR6a2E5AC3S6dBaJxYl1qyRXwQ15QflVkAK8AmAwql/n4frTztb/XRXV9J3eXRfv0MuB1OShRrtbrfdudwKxsAYC+QHiNISbAQu46ffUU/Flrw68uJ5L+7p69JjfglHs5PSd0bjADZeFsIWCqy0kQ20m3CskYLPShb0aoDdHoJBUQVEirAUgeRTtUBwAa0INXTIBPMHp9AongtXzSfuWCFQfDtzRuYRVG3WIXUjEg7b2vBZKT4ESq2tTcMyGXlqZN+uJ3CaGHEJB/3Q6/xrGIGIxyzCG5tLlSXx61sy0Bra4IFaYrjF1zJj5JPK/SslbN65uYffnqtyIX9zren+rrSsXVVhq8VZ6DFpnBVlD48AoMeltsyGSZSpdUjR6bM9J+oHRVmhpp2HBv+N4PXeS76ctP4LOLvreBzzyCr2v1K7eBo+dr2gwZ2x9k6EpHd7pNRl6Pv+IgXtj4WmtlEUQxkzWOVcT6jcLrhax5PVvgurz9q7DtdWriVdnpnTlTrQqdvWN6ZNr4OdpMM/T5Gg8irLXS/YOgvhteS49VEj8+IfNiPOf8MfMkUw+lYehdNxKZnNbjIoJiqRY1KVGIOWpRtq4m6GCyiypZKKzWBQq5j8RYJE0NCiyjJmgUmDBi8BoJgMVJYXMF4aGDL2XQ4HDKaRGaGhctNBrShK0bSU1BpFoRaTkkCCUWaDCx1MUXQCaGRhgoqhCHmzrFyZwUFG27KVdmNgbChCbZNAMghZRoXKM0CMEXaUTZswtBpLoCkxONrpa2wL0qn0mw2eV0yXs1MGgGSTcAo/GELIbpoe+8gKSqpV0ZIoIa4UCcM2EdVikuAPuDlU89YsXrb9Zb+Pr/F8NexBBbEwTQs9HmsQGBYPoK6bZKDvj9yyALrlOaMbLpKxRM+njvB4id/1Y1WPm3K2A0BVSlgWJNjYxne6JZ8mZfv7w1Nm3/GFOiwonktduZaRH2loGGhNBUlQiHENkybM8pBim0iaXcpE8dAF4GodlriMfOGH6hHY20huVvSlLDBRKHQ4Y3SyKrmCcy7ZZMDyNqVWWwpS+RHQaYnmEURGCKmQc8ARghpQffVMwK2vz6V97O+59X5foz4jUfN33Z49cKeKObXDE1rNvV2QaDOLOi+R0fl+RM8jVQ7QgNiDMzMgUCLlYO71Vn7X7vF0UcSZX1pu+s+xC4MZXNQCl0/rb68aAY3rOJ/jaw7EOYIIlln6V+oFpwZLOUjUVHfe6pdjXgAqsD219Ri16edZ03hcjePW71C29Wy0nTw5YIfs/Y9sNovb+v8vA1P7beB5bQmvEv59b+BnUs8yqQ5/cLKV0EZRMOGHmpsMrPidWDXTyP3fuO+w/9+kbujeEbdg+n4WXJQBn1kL3Py/M1JnkOu70oufaRPG6bsd6SUhq1TALBZAhKpoyMIvkQGRAzJD+udGR9e+WlVzjlJeqELl+D2smL4vG6BUFpiKHDwqftFBbX+9VV338vNg+5kL11bd1yrZaYZrGW36mrUIRi/MVgrNNITCj++zpFSOrRLE+Prlr3mYOP1TtXvtpOwLP5Kmt+3zZvXSsOXW+ix6mXS5mb1MnTvW0u8yHF356RuzXUyeGiLTe+IvXvKmJrEymIxQT9QMSU8WTHgnJi1BgP/WoqICgO21v9Hiw8IaXJY1619oEj/3cb/7R/nddLm6VA5xoN0t3XY6Hiep4VGnzs/Od0hj8f39YuAC5HvfwvWuOeV5fz820AAGglyrLFDjUrv//M/fwNdsEvj0MrTXrV8vLZfMvKMAzJ0/Sda/28/N0QniGmKhoagYUYMGp8IFDrOoi40L48r/SLxfSSDw9TM4P4vUeHE+iTmchyj7Vmwp7m7dejVSNZx+2Is5jzuf+HmHr2aml3fWein0wnXnxne72A86Cc3hrzXgbfc7lNQiJuGMljn2Y8pgXjrTczIy1teeafy8Tz8vmzBWAAFXfojX/x4Kv/YFNprgURbUBytnsI9/0WeuKmZjrWcumUGQgRDIEUsAwZkQMwPsGTJjpTEw7YAwCs7Oxn2XE+hexXn+z/L7HC65bJhCR3SxMdHngfkGgqJnhYzTGjw9StB6E4VI6SgkdNEdesLFW0cgxeYq7YABEPlMspZSBtZDQYZMvK9Cbu/UzXvja7MLlO4BfVYkMH5dwAfQ3u9WEkCoveLyp86iGmleemxREJQ0NoFyWpMxsNQCuuLGCdP703Uv1a3JeT7vfpxp8J+o/ft+J70dz7dV+1QEcxyT6REE6vsl2+0Yd8ayjKWBg2j8pRTeGhVxiYZDc6/YatrSzsw56wbWzGkp3FLpa8+60pan1LSvb+rcfyjTyEM7yC5BVyZL4r0qVCMZRc+AMHxlyZMP5QQiFATNqpVSdy8i66S7oSIl4APKPMzOTus/KeI8rrY6qBkuRSWT0y7LGvNz4KBjigkR4r0v9/bluxFmxePnvZRhpjgezOiX6bPa5LZkzsaLjmf6NzPP1ZfH9p7j4MsQL0YMETXjeb/5lAYcJWU1RECXppb+33HdO5Etl4xLXPxfV8cGZ43FFYXKVoMFQHssoAIzyiClcZR8W8vqiACqmcw8DAwzLM+FeLFaAYRiJ1DFqKh2Fcs+6Zd6erYKNpF09oZhCZNX4DO1OL94JPGTBXIPMmPjmDb0GlmwFaWG2CUqSjhc20YNd6Wwzu52BklGYvDcMnERi4Yh1wqwcOlqiLatNe4rj8FcXDxqMSsgYP5/FnSoTq2VVKttXQ3Gxq0q0Shp+qCbIAeWxu1Ynpd88H5zJfn/V+v+5/N7nyR7Q+n02bmML7aF1Sg+a32Ud2eQx2a8dQqTABf2SKJgvKADJgAJV8Rd0Wt1oIVj9nr/ZfC7fkbdqnS9R4eIbqH2HVNjOYdggfFeSAHKIkaC5R2rzEzdxs7dDCzizsiB7OluhJplyBBWKXPmS0tsUNnNs2D8zfW/QTSAr0EcsnQ/YPZBD4D0rHa3rkC2DHq+G97XfliTeY63fQow3RQpyKsCFgdUC2sF7aep4TmSDjlnDDpfIUJ3Ne7AMT4D7xpuM+j1hXBxYcyIpO3bvLubMhwY3Lrr6KfLP4PF0tpDjMOew5rBbSSUJPAfRMkDCSBum/B7S97oYaYZS56rtu79Vh408mfXcm6HcL0Qe7fRiqav0GhPcuxMpZIm/WHpICgBUirY8aK56MaW53+L/x+BbXNrjaySqntSLsoHFEiExu5hX7+yaqu7Ss2LrWVpPp9L8fuVDJdVcPqIQRFv/gWlUadkCUYMxFQf26Nlq3czS1/zwLAGILGRazcevp3q9/0O/YUWwXKvQTQghgHliLIIbcY0XxVr/9oV2++gsQ57NkRK084MjYapPJJ6Gd7WONsJRq6iIJo0GH/kO9e74wvERAiMW7UqLI+2obG59Xcazzvdk2UIhBDN4V/KqrwHJ9EpMftxjsugftMee96M9+G1DfnomWt7OmvNC5TP5/Fa50GNfJjieHFJ0mwlIothDYzg3BQyahykpudGZEmgiK9ViiKhI9ypBUuKuau8PitJWe1r0kVIrV4VRDTDa74vSvBytKDcNCzJ66Oq5G+hTTGgbpBMS6pJTOmrIjb0m9HsPvrI3rQhSkRYc1aEmn4+CFS9MpIxTpLccqtp+dpwTDqQfFDvleEeOfwGuSJEiR4QBtGkWjWrKysrJEiRI3Pd252xBk1NTBRRRZZZZZZZZZe4EJvbjqWGaaZgEypipYBc9da7d615Ozv+0TPBMoiPZt+OB7H2evtWBqyXzg9jgyNarCYQHxeABDu8KyT59xFO4fpXed3nMVTnQhwffnGz0DpW+c5RkbdjYgCQgDV6Sk3OZyVhq5u3M66CH4jQq6byDLwIv8D7ipARoPE7/rm7y2+93QALi1QT9F/QCxMDOQkHeUdC+o3NN9GXve/W1Ua/wcVgmxFD1YTuKB+xQIiSdMyXLjSbjWwNfsJH8DqADRWZHIyjHLolbAN4CAMrT3YQqcfwcVf9TtpcgPfzwWRN7XWJzrS1KzOVWXccRQ+9TusY64JEtzfyHJnKixBwcbgCBAgQiIiIiiqp3Pje3Y4/hFGgiIiqrTGMYxtsZSR3dlixYyrLVZTH79fh8yNTc4ezofRU9vjHOIATEYEQNb4IG7bzkD59jIzRNInn9c62cuu1ZkYpfHu7uokt8nd1Hc6ApKjEt2qqbEG2l6oUPERCkrFLjmUay3EPnj2vUe43MqIYdrm3PZT7WrLfnw7y9is1SEtuI3OsO3EW80l8imWVq1Yje2a7qnbRVNK7eZSUzwnE6j9CLm24oqbZ35UTokBKroRjwJNyCBEACLMRjnOy84O5zJREd0g8Xa+y0W7O3tcCI+46EvAjDUyqYnOCQAfEhYjlWVo9HFVl0Fk1g6rWywYXLyW9gmyJHKcFdans6g078Q9ryUjaXacP7/PvwauCguS3VK61FsSTIa5RZd+GJqurSiskfDyz7d0Bd7WxYHfJfTrpTamo87sRYMCEdyYaUdCzhu3027ABTtQCAnwKi9q3KK/rIpk6zEjGHEvADnOwuJ1nOvPr8XZNswFPZ07G/LauwBMG1tOWNT76s7Jw1OxxW1BImaJT6XUIQ/1VPRP6UZLBjAVwit2h7xS6TLbCUnzPvqOrOfrbFh/ZAFnP7jW/zIMkMNMUk5C20iKshen2HLTcv3ge8jBXRbUso7c88qlYXXozqDXWcHg21XXWzupu9YmNN2aY8W/tJ3ru1cs4YtK5b/YBitp4WYoOvZCpCIC0Ju2+xw3MABgLVFBetW9KA2pqTQMLlkKFfMNANN6+JBLD7W6/i0AiMi2fIgslxtlD+bdgBbDk1FxvsbR+npU23xUVtnBjvadzYRwqwnvWSPbrgxgFM01Y2yuGIJh4HBXDlmKSUokWxg39HUAD4u4+D8ivAiXNQkqnkKxTsDkVM+u/s6rx/w/VPZ1yL9nnzJm2YZ9Wl+9izPDiRnfzWU5Eo5duybQnktKu3b+J3pVuuBmmnebBXfiZtkpUjLRKvtuhD3GDAd3t8lPpMQgVQmkICwxxqhUhLQMPWxbwjlswPn5rmN8Fi0j25H0DYQMgIsU4+OvNxfxINfZR+ndisEVJrn6M1cgs+qsqW2AYv5gIBUG2nAI2sRJdPp0pkIFsJQ9DC0Exajuxg+5pGLShRHi9wPxlNGkITynkwYgPc5Bjm1ceZiqsTuXbr2ZrcqBszMKehW3A7cYHig2nqO46ef4275H+NjUxZ7Yxj0XWdJ+CBStOyj3EqZrP6f8049HRTOibY6aHBkysu7Zy/0S6gyH3v1st5NJVth4dqmwuarDr5z62e9OpPUqH6te3WRJmOs5XNggNsBgGGgo4SSlh/wYAXsqj3aHIiODcmQbAbQltCKcIoU5klptJHQ0l2P4Tgjad8WBWp9XyPm/j3QYeU5tV+GSJ4bCaYcK2PA4Spq7rr4bGK2La8fhcB+ZpbeVZdDoKcxwCBZQgvQmADvnSmoonhrOe7esVg+7JS5aUYwMCekjlC6YlQHUxfh1evKIB8OGrutYZ4YX41h6Jq6hHuvnBsJnjhYHY81i95iJiJTU6/T7VS3gB1qH0ACm35YBe58z7ceWShP5goYAvCcHOTphatcimJSi7e8cPtVNlLBeanev47WzlgmaIlrfg8PQALIwuyc+Ce7PTEdI6IMaL62wH5dzYaANEsRgmxYif+uWKupAwqrJ4eXO3BFsHrOiYQRSnB5GwA01qir3ZWamHuBtKIrzLS3by/XYFMY2AJEnhaR7ycHZFV8q2AKplu2J5dsQ24LL0qZisABXaOzHlwBFOQv0vOYWldhDsVt5f3Y4pEAsNwPQChB5QmJB9EYeqbx1Mx3plDVGMY02NMYxjG228wkHXLQBuctwIzDl0DNb2d3Zr2eV57mni8HxuT3pPieEQB9MdPlRq2ASoAJ5D34BKD2+jwhMSM3k9e3pXf6aOC4LK2IgIYJ4xQMEhhPzy+0BRQRAMTrG+uVq2FlPAAWvayCMW6HdOctiAZvYzmADuOlcPkF5QWJAaMRsb5I0Onl1kWwDFstny1tu3cPUt/f34gagGAiIG0z+LwJMwuBjAAO0oXQ+j2OhzkkDWu/H1iOt9LZS2d9xud3NjEIOUBcEGiLbYAIhuk6kG3QiZ7Vx448qOR0823ux6gaDAo/m7VGENCDY55QyihE8PY2c3FAOq0eB5VrR2rVOD8Pk54g10gYFruoShyCA600IlGADNkNWFwSUq26fo1MfJozZb8ivAWwKtUCnsIy1VVc6gilxgZXuOpIn5NqpQ4t1rnTCc+zVGQ8dLhuE4NDF7wA+sXOKNy3yzCWV69Yg3C0AUAEgSDmXcoIVu+dFgcdgdaEhA+iWl1AC/p9ikx5Lmxupjb3zEXwOwav5pXeGFu/i1uQdRtu2CBnIi7j7vIXJ+0+JkKDrtuikSysRrZuAkIPGGIXa2KOvhm+tzKtliPPcIGhgwSePz0mjUO5L7zzmcZMHoTM00cmhmTJXLHXXVL0wJj4s1MzRHFFiZHJnI5xbqYKxtqajjQWsuDBeCnFPf3bjFXVC0XXPfJZnZvcUOvlJ5TfVc9np7+YKcF8Pr101cACqIsDSQrhevDLMRutoELrdyRd4yc4EBhnWVGVUo4LsLWMYimrKjHNShUXacMGzWd1rteL0aqM9Wd9vU8jWwVgD0CDq0ypYdiu5V1wDsEFjDwLXJ6pe46MvOgOONLlAwPQwQmNUX+2AdnCCSJdjtaAefC8AY7bANwtVktFIQWVBQ95dSmjz8VnKFc5xsXgOQl3TQHPvghbPELlyOR3/IjaKbR4oXeqF4EjmEktr0SghMIXS60jhlBQIfEIJnyehMgiETwigxDpiHows1RgnEalhk2EzYwRLmRwajUmIaCFSzCXWStGaaJgaMaFOidK9crUyN2ZuYmDCMxbjQvOVrOaRTDXXVeCjhum+v9g5xzwDtdCQ0k+kA7IgR/IB4DE2B6gEv0Dv6l1YUCwQl4cgIQLDp7+vyQ0Ua6AogR/cA0tRku3sTszsBxdKvDwb0HSuapgWAtRzrmM+GLTWgg8og8IOyt6ZvFLTvQ6TdIU4jAZ9qJLorPPx8ToMIzve9bunjAzUZTwZAuejvlIVhEDGHZ43P+c2vnuH0s6xLjGN5IxE0xoW1w0CkEhDEzZIIIKKKJQkS+HFVRzrtPvD4ASgRgCszCJ7egCW+IZ1AZrFQIbETEL8gYz6s0SYtQwYi6Qsmdq1IQVCNcDQEDNHPNnw9vKmss525+DcQrAWHAQARzWHlAGPJFvL0qtVnM2mDSOxfDb56lUUmGI9SmNfCBxBRJtxwA+2eJCOmpSpXLFbYv8diZyMpTv2LEbyMNcTJr20IxsYzUrvRbyu5dvYHUZsRs8gfCLXUEVYi8a2a9PXF+ZtLPx0ZOLRblX8XTa0QJJSoa+VKRIKD5RCmFKYOIiBoFAUCXYIXCCWZKNExSIoiMUmCpS01EkRLAsoE0NCxCz8oQK0iCYNZrgS0sWA4zJgpKMgxYZxIN0k6OoboxHmMgmKyNy3rUrA2BW11g0yU50ArBdUNYm7rW6l+FmQDmsfUcr8Nxpt6ME1pzmPW2YuvyqQA1FEqGKaOFgPS4YwF0qjqJ96aNghQyxO4ETMPCpx6cPhE1xsRksh7qapVjAG7QQVa6blYCqhJolWKylASeNpfutZRkWEfehrAM1hps1M6VN9y+8pnOeOL3eSrvGKkr3kEDbExtsYADtYMAhLoFzWdZo6F3T89cLurlkYDQ8iWVgjINJHQatNc/BZZPPYhX7J3dX5zJTnZ1pJIV4y+k2MF25BTUhIvz2okmED6ax7KgYdJtMkMMjHiBpMVmJIippQbqyHkJreoQDGrZe8QH4qNpIBqEHFpVTrJVwkLCu5ds3+pbccosPAGFjP4J0AB15EXRr4rcAbXmibqr2600yb4dM8VbMHACFOCBZhZIxpWCMkDUZIBUQoKpooWCkAnBzOK5na/LqSSLTATYIaabQCteZkFlqs0bDPpuWAcNiRn6GWSnwrsatNVFIK0+WUGVX3p1UghXmamW9amFzoPHfP2Z3WLhW9ZEaq0DQiqOJyRC17MYwQA84eUDjyR/GOBNpNoO1pV6NwwsBZoAgBWz+M+YS5GC+Su1IEB0A5in0LwPQxXq7joeDPBdd3DzF6z96RTojxR29u8vE3GnO6jAa0MBmCuoxyYl/SDsbSpYIlMINttOUZndGWJ2JgBs8s7bw1GhnALOxFBnZayRRjt4bSvH+Ma9WNZSaKBoUDtDEQNIMt5XAZJIvEFZSahWUgL7ADIBAjZYJVAK8NHljSCRbLZdxbuCkFfrZVirL+GkBWYaJFCoglTaEWtiguhCVZNjj+c9eMUMbOVJQmcHOmKmRIKboAMkAbohUflNANgubKuhTXDGSlSKY0PetmdL+7bQoIJCVRY+osfasgH1NADQYBBoYd+dccoSIhapDyYkRkhkYGAZDWCMlJReDHnRJZKAxUYiJmPGYriVoGAkdW2QI785BQQakRBFiFEknMOMGpw8jj8a7sLaWrGrZ5gDnB2Ys6AFHfczh5BvVw8R6n1P4QHEbDeIf/i7kinChIP/Mpng="
21
+ kernels = Kernel(
22
+ bz2.decompress(base64.b64decode(quantization_code)),
23
+ [
24
+ "int4_to_fp16",
25
+ "fp16_to_int4",
26
+ "int8_to_fp16",
27
+ "fp16_to_int8",
28
+ "int4_to_bf16",
29
+ "bf16_to_int4",
30
+ "int8_to_bf16",
31
+ "bf16_to_int8",
32
+ ],
33
+ )
34
+ except Exception as exception:
35
+ kernels = None
36
+ logger.warning("Failed to load kernels:" + str(exception))
37
+
38
+ def quant4(weight: torch.Tensor, scale: torch.Tensor):
39
+ stream = torch.cuda.current_stream()
40
+ num_row = weight.size(0)
41
+ num_chan_fp16 = weight.size(1)
42
+ # 4bit
43
+ num_chan_int = num_chan_fp16 // 8
44
+ qweight = torch.zeros((num_row, num_chan_int), dtype=torch.int32, device=weight.device)
45
+ intweight = torch.empty(num_row, num_chan_fp16, dtype = torch.int32)
46
+ intweight = torch.clip(torch.round(weight.to(scale.dtype) / scale[:, None]),-16, 15).to(dtype=torch.int32)
47
+
48
+ for j in range(num_chan_int):
49
+ qweight[:, j] = ((intweight[:, j*8+7] & 0x0f) << 28) \
50
+ | ((intweight[:, j*8+6] & 0x0f) << 24) \
51
+ | ((intweight[:, j*8+5] & 0x0f) << 20) \
52
+ | ((intweight[:, j*8+4] & 0x0f) << 16) \
53
+ | ((intweight[:, j*8+3] & 0x0f) << 12) \
54
+ | ((intweight[:, j*8+2] & 0x0f) << 8) \
55
+ | ((intweight[:, j*8+1] & 0x0f) << 4) \
56
+ | ((intweight[:, j*8] & 0x0f))
57
+ return qweight
58
+
59
+ def dequant4(qweight: torch.Tensor, scale: torch.Tensor, input: torch.Tensor):
60
+ stream = torch.cuda.current_stream()
61
+ num_row = qweight.size(0)
62
+ num_chan_int = qweight.size(1)
63
+ # 4bit
64
+ num_chan_fp16 = num_chan_int * 8
65
+
66
+ out = torch.empty((num_row, num_chan_fp16), dtype=input.dtype, device=qweight.device)
67
+
68
+ blockDim = (128, 1, 1)
69
+ gridDim = ((num_chan_int + blockDim[0] - 1) // blockDim[0], num_row, 1)
70
+ if input.dtype == torch.bfloat16:
71
+ kernels.int4_to_bf16(
72
+ gridDim,
73
+ blockDim,
74
+ 0,
75
+ stream,
76
+ [ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
77
+ ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
78
+ )
79
+ elif input.dtype == torch.float16:
80
+ kernels.int4_to_fp16(
81
+ gridDim,
82
+ blockDim,
83
+ 0,
84
+ stream,
85
+ [ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
86
+ ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
87
+ )
88
+ return out
89
+
90
+ class QLinear(torch.nn.Module):
91
+ def __init__(self, bits: int, weight: torch.Tensor, bias=None):
92
+ super().__init__()
93
+ self.quant_bits = bits
94
+ self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
95
+ if self.quant_bits == 4:
96
+ self.weight = quant4(weight, self.scale)
97
+ elif self.quant_bits == 8:
98
+ self.weight = torch.round(weight / self.scale[:, None]).to(torch.int8)
99
+ if self.quant_bits == 8:
100
+ self.weight = self.weight.T
101
+ self.bias = None
102
+
103
+ def forward(self, input):
104
+ if self.quant_bits == 4:
105
+ assert(input.dtype == torch.bfloat16 or input.dtype == torch.float16)
106
+
107
+ if self.weight.device != input.device:
108
+ self.weight = self.weight.to(input.device)
109
+ self.scale = self.scale.to(input.device)
110
+
111
+ if self.quant_bits == 4:
112
+ self.scale = self.scale.to(input.dtype)
113
+ rweight = dequant4(self.weight, self.scale, input).T
114
+ output = torch.matmul(input, rweight)
115
+ elif self.quant_bits == 8:
116
+ rweight = self.weight.to(input.dtype) * self.scale.to(input.dtype)
117
+ output = torch.matmul(input, rweight)
118
+ if self.bias is not None:
119
+ output = output + self.bias
120
+ return output
tokenization_baichuan.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from shutil import copyfile
3
+ from typing import Any, Dict, List, Optional, Tuple
4
+
5
+ import sentencepiece as spm
6
+
7
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
8
+ from transformers.utils import logging
9
+
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
14
+
15
+ PRETRAINED_VOCAB_FILES_MAP = {
16
+ "vocab_file": {},
17
+ "tokenizer_file": {},
18
+ }
19
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
20
+
21
+
22
+ class BaichuanTokenizer(PreTrainedTokenizer):
23
+ """
24
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
25
+
26
+ Args:
27
+ vocab_file (`str`):
28
+ Path to the vocabulary file.
29
+ """
30
+
31
+ vocab_files_names = VOCAB_FILES_NAMES
32
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
33
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
34
+ model_input_names = ["input_ids", "attention_mask"]
35
+
36
+ def __init__(
37
+ self,
38
+ vocab_file,
39
+ unk_token="<unk>",
40
+ bos_token="<s>",
41
+ eos_token="</s>",
42
+ pad_token=None,
43
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
44
+ add_bos_token=True,
45
+ add_eos_token=False,
46
+ clean_up_tokenization_spaces=False,
47
+ **kwargs,
48
+ ):
49
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
50
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
51
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
52
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
53
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
54
+ super().__init__(
55
+ bos_token=bos_token,
56
+ eos_token=eos_token,
57
+ unk_token=unk_token,
58
+ pad_token=pad_token,
59
+ add_bos_token=add_bos_token,
60
+ add_eos_token=add_eos_token,
61
+ sp_model_kwargs=self.sp_model_kwargs,
62
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
63
+ **kwargs,
64
+ )
65
+ self.vocab_file = vocab_file
66
+ self.add_bos_token = add_bos_token
67
+ self.add_eos_token = add_eos_token
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+
71
+ def __getstate__(self):
72
+ state = self.__dict__.copy()
73
+ state["sp_model"] = None
74
+ return state
75
+
76
+ def __setstate__(self, d):
77
+ self.__dict__ = d
78
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
79
+ self.sp_model.Load(self.vocab_file)
80
+
81
+ @property
82
+ def vocab_size(self):
83
+ """Returns vocab size"""
84
+ return self.sp_model.get_piece_size()
85
+
86
+ def get_vocab(self):
87
+ """Returns vocab as a dict"""
88
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
89
+ vocab.update(self.added_tokens_encoder)
90
+ return vocab
91
+
92
+ def _tokenize(self, text):
93
+ """Returns a tokenized string."""
94
+ return self.sp_model.encode(text, out_type=str)
95
+
96
+ def _convert_token_to_id(self, token):
97
+ """Converts a token (str) in an id using the vocab."""
98
+ return self.sp_model.piece_to_id(token)
99
+
100
+ def _convert_id_to_token(self, index):
101
+ """Converts an index (integer) in a token (str) using the vocab."""
102
+ token = self.sp_model.IdToPiece(index)
103
+ return token
104
+
105
+ def convert_tokens_to_string(self, tokens):
106
+ """Converts a sequence of tokens (string) in a single string."""
107
+ current_sub_tokens = []
108
+ out_string = ""
109
+ prev_is_special = False
110
+ for i, token in enumerate(tokens):
111
+ # make sure that special tokens are not decoded using sentencepiece model
112
+ if token in self.all_special_tokens:
113
+ if not prev_is_special and i != 0:
114
+ out_string += " "
115
+ out_string += self.sp_model.decode(current_sub_tokens) + token
116
+ prev_is_special = True
117
+ current_sub_tokens = []
118
+ else:
119
+ current_sub_tokens.append(token)
120
+ prev_is_special = False
121
+ out_string += self.sp_model.decode(current_sub_tokens)
122
+ return out_string
123
+
124
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
125
+ """
126
+ Save the vocabulary and special tokens file to a directory.
127
+
128
+ Args:
129
+ save_directory (`str`):
130
+ The directory in which to save the vocabulary.
131
+
132
+ Returns:
133
+ `Tuple(str)`: Paths to the files saved.
134
+ """
135
+ if not os.path.isdir(save_directory):
136
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
137
+ return
138
+ out_vocab_file = os.path.join(
139
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
140
+ )
141
+
142
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
143
+ copyfile(self.vocab_file, out_vocab_file)
144
+ elif not os.path.isfile(self.vocab_file):
145
+ with open(out_vocab_file, "wb") as fi:
146
+ content_spiece_model = self.sp_model.serialized_model_proto()
147
+ fi.write(content_spiece_model)
148
+
149
+ return (out_vocab_file,)
150
+
151
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
152
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
153
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
154
+
155
+ output = bos_token_id + token_ids_0 + eos_token_id
156
+
157
+ if token_ids_1 is not None:
158
+ output = output + bos_token_id + token_ids_1 + eos_token_id
159
+
160
+ return output
161
+
162
+ def get_special_tokens_mask(
163
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
164
+ ) -> List[int]:
165
+ """
166
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
167
+ special tokens using the tokenizer `prepare_for_model` method.
168
+
169
+ Args:
170
+ token_ids_0 (`List[int]`):
171
+ List of IDs.
172
+ token_ids_1 (`List[int]`, *optional*):
173
+ Optional second list of IDs for sequence pairs.
174
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
175
+ Whether or not the token list is already formatted with special tokens for the model.
176
+
177
+ Returns:
178
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
179
+ """
180
+ if already_has_special_tokens:
181
+ return super().get_special_tokens_mask(
182
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
183
+ )
184
+
185
+ bos_token_id = [1] if self.add_bos_token else []
186
+ eos_token_id = [1] if self.add_eos_token else []
187
+
188
+ if token_ids_1 is None:
189
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
190
+ return (
191
+ bos_token_id
192
+ + ([0] * len(token_ids_0))
193
+ + eos_token_id
194
+ + bos_token_id
195
+ + ([0] * len(token_ids_1))
196
+ + eos_token_id
197
+ )
198
+
199
+ def create_token_type_ids_from_sequences(
200
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
201
+ ) -> List[int]:
202
+ """
203
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
204
+ sequence pair mask has the following format:
205
+
206
+ ```
207
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
208
+ | first sequence | second sequence |
209
+ ```
210
+
211
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
212
+
213
+ Args:
214
+ token_ids_0 (`List[int]`):
215
+ List of ids.
216
+ token_ids_1 (`List[int]`, *optional*):
217
+ Optional second list of IDs for sequence pairs.
218
+
219
+ Returns:
220
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
221
+ """
222
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
223
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
224
+
225
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
226
+
227
+ if token_ids_1 is not None:
228
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
229
+
230
+ return output
231
+