pushing files to the repo from the example!
Browse files
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
README.md
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
library_name: sklearn
|
| 4 |
+
tags:
|
| 5 |
+
- sklearn
|
| 6 |
+
- skops
|
| 7 |
+
- tabular-regression
|
| 8 |
+
widget:
|
| 9 |
+
structuredData:
|
| 10 |
+
AMBIENT_TEMPERATURE:
|
| 11 |
+
- 21.4322062
|
| 12 |
+
- 27.322759933333337
|
| 13 |
+
- 25.56246340000001
|
| 14 |
+
DAILY_YIELD:
|
| 15 |
+
- 0.0
|
| 16 |
+
- 996.4285714
|
| 17 |
+
- 685.0
|
| 18 |
+
DC_POWER:
|
| 19 |
+
- 0.0
|
| 20 |
+
- 8358.285714
|
| 21 |
+
- 6741.285714
|
| 22 |
+
IRRADIATION:
|
| 23 |
+
- 0.0
|
| 24 |
+
- 0.6465474886666664
|
| 25 |
+
- 0.498367802
|
| 26 |
+
MODULE_TEMPERATURE:
|
| 27 |
+
- 19.826896066666663
|
| 28 |
+
- 45.7407144
|
| 29 |
+
- 38.252356133333336
|
| 30 |
+
TOTAL_YIELD:
|
| 31 |
+
- 7218223.0
|
| 32 |
+
- 6366043.429
|
| 33 |
+
- 6372656.0
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
# Model description
|
| 37 |
+
|
| 38 |
+
This is a LinearRegression model trained on Solar Power Generation Data.
|
| 39 |
+
|
| 40 |
+
## Intended uses & limitations
|
| 41 |
+
|
| 42 |
+
This model is not ready to be used in production.
|
| 43 |
+
|
| 44 |
+
## Training Procedure
|
| 45 |
+
|
| 46 |
+
### Hyperparameters
|
| 47 |
+
|
| 48 |
+
The model is trained with below hyperparameters.
|
| 49 |
+
|
| 50 |
+
<details>
|
| 51 |
+
<summary> Click to expand </summary>
|
| 52 |
+
|
| 53 |
+
| Hyperparameter | Value |
|
| 54 |
+
|------------------|------------|
|
| 55 |
+
| alpha | 1.0 |
|
| 56 |
+
| copy_X | True |
|
| 57 |
+
| fit_intercept | True |
|
| 58 |
+
| l1_ratio | 0.5 |
|
| 59 |
+
| max_iter | 1000 |
|
| 60 |
+
| normalize | deprecated |
|
| 61 |
+
| positive | False |
|
| 62 |
+
| precompute | False |
|
| 63 |
+
| random_state | 0 |
|
| 64 |
+
| selection | cyclic |
|
| 65 |
+
| tol | 0.0001 |
|
| 66 |
+
| warm_start | False |
|
| 67 |
+
|
| 68 |
+
</details>
|
| 69 |
+
|
| 70 |
+
### Model Plot
|
| 71 |
+
|
| 72 |
+
The model plot is below.
|
| 73 |
+
|
| 74 |
+
<style>#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b {color: black;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b pre{padding: 0;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable {background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator:hover {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-item {z-index: 1;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:only-child::after {width: 0;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-container {display: inline-block;position: relative;}</style><div id="sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b" class"sk-top-container"><div class="sk-container"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d20384ee-8f34-4e73-b4a5-b15dfd56af7a" type="checkbox" checked><label class="sk-toggleable__label" for="d20384ee-8f34-4e73-b4a5-b15dfd56af7a">ElasticNet</label><div class="sk-toggleable__content"><pre>ElasticNet(random_state=0)</pre></div></div></div></div></div>
|
| 75 |
+
|
| 76 |
+
## Evaluation Results
|
| 77 |
+
|
| 78 |
+
You can find the details about evaluation process and the evaluation results.
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
| Metric | Value |
|
| 83 |
+
|----------|---------|
|
| 84 |
+
| accuracy | 99.9994 |
|
| 85 |
+
|
| 86 |
+
# How to Get Started with the Model
|
| 87 |
+
|
| 88 |
+
Use the code below to get started with the model.
|
| 89 |
+
|
| 90 |
+
<details>
|
| 91 |
+
<summary> Click to expand </summary>
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
import pickle
|
| 95 |
+
with open(dtc_pkl_filename, 'rb') as file:
|
| 96 |
+
clf = pickle.load(file)
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
</details>
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# Model Card Authors
|
| 105 |
+
|
| 106 |
+
This model card is written by following authors:
|
| 107 |
+
|
| 108 |
+
ayyuce demirbas
|
| 109 |
+
|
| 110 |
+
# Model Card Contact
|
| 111 |
+
|
| 112 |
+
You can contact the model card authors through following channels:
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
# Citation
|
| 116 |
+
|
| 117 |
+
Below you can find information related to citation.
|
| 118 |
+
|
| 119 |
+
**BibTeX:**
|
| 120 |
+
```
|
| 121 |
+
bibtex
|
| 122 |
+
@inproceedings{...,year={2022}}
|
| 123 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"sklearn": {
|
| 3 |
+
"columns": [
|
| 4 |
+
"DAILY_YIELD",
|
| 5 |
+
"TOTAL_YIELD",
|
| 6 |
+
"AMBIENT_TEMPERATURE",
|
| 7 |
+
"MODULE_TEMPERATURE",
|
| 8 |
+
"IRRADIATION",
|
| 9 |
+
"DC_POWER"
|
| 10 |
+
],
|
| 11 |
+
"environment": [
|
| 12 |
+
"scikit-learn=1.0"
|
| 13 |
+
],
|
| 14 |
+
"example_input": {
|
| 15 |
+
"AMBIENT_TEMPERATURE": [
|
| 16 |
+
21.4322062,
|
| 17 |
+
27.322759933333337,
|
| 18 |
+
25.56246340000001
|
| 19 |
+
],
|
| 20 |
+
"DAILY_YIELD": [
|
| 21 |
+
0.0,
|
| 22 |
+
996.4285714,
|
| 23 |
+
685.0
|
| 24 |
+
],
|
| 25 |
+
"DC_POWER": [
|
| 26 |
+
0.0,
|
| 27 |
+
8358.285714,
|
| 28 |
+
6741.285714
|
| 29 |
+
],
|
| 30 |
+
"IRRADIATION": [
|
| 31 |
+
0.0,
|
| 32 |
+
0.6465474886666664,
|
| 33 |
+
0.498367802
|
| 34 |
+
],
|
| 35 |
+
"MODULE_TEMPERATURE": [
|
| 36 |
+
19.826896066666663,
|
| 37 |
+
45.7407144,
|
| 38 |
+
38.252356133333336
|
| 39 |
+
],
|
| 40 |
+
"TOTAL_YIELD": [
|
| 41 |
+
7218223.0,
|
| 42 |
+
6366043.429,
|
| 43 |
+
6372656.0
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
"model": {
|
| 47 |
+
"file": "solar.pkl"
|
| 48 |
+
},
|
| 49 |
+
"task": "tabular-regression"
|
| 50 |
+
}
|
| 51 |
+
}
|
solar.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:435b149d9761cf5e1f4ecb85c7e9364a49f5602be18918f8377f54c03f5756d5
|
| 3 |
+
size 778
|